TWO-WAY COMMUNICATION CHANNELS

CLAUDE E. SHANNON
massachusetts institute of technology
CAMBRIDGE, MASSACHUSETTS

1. Introduction

A two-way communication channel is shown schematically in figure 1. Here x_{1} is an input letter to the channel at terminal 1 and y_{1} an output while x_{2} is an

TERMINAL I
TERMINAL 2
Figure 1
input at terminal 2 and y_{2} the corresponding output. Once each second, say, new inputs x_{1} and x_{2} may be chosen from corresponding input alphabets and put into the channel; outputs y_{1} and y_{2} may then be observed. These outputs will be related statistically to the inputs and perhaps historically to previous inputs and outputs if the channel has memory. The problem is to communicate in both directions through the channel as effectively as possible. Particularly, we wish to determine what pairs of signalling rates R_{1} and R_{2} for the two directions can be approached with arbitrarily small error probabilities.

Before making these notions precise, we give some simple examples. In figure 2 the two-way channel decomposes into two independent one-way noiseless binary

This work was supported in part by the U.S. Army (Signal Corps), the U.S. Air Force (Office of Scientific Research, Air Research and Development Command), and the U.S. Navy (Office of Naval Research).
channels K_{1} and K_{2}. Thus x_{1}, x_{2}, y_{1} and y_{2} are all binary variables and the operation of the channel is defined by $y_{2}=x_{1}$ and $y_{1}=x_{2}$. We can here transmit in each direction at rates up to one bit per second. Thus we can find codes whose

Figure 3
rates (R_{1}, R_{2}) approximate as closely as desired any point in the square, figure 3 , with arbitrarily small (in this case, zero) error probability.

In figure 4 all inputs and outputs are again binary and the operation is defined

Figure 4
by $y_{1}=y_{2}=x_{1}+x_{2}(\bmod 2)$. Here again it is possible to transmit one bit per second in each direction simultaneously, but the method is a bit more sophisticated. Arbitrary binary digits may be fed in at x_{1} and x_{2} but, to decode, the observed y must be corrected to compensate for the influence of the transmitted x. Thus an observed y_{1} should be added to the just transmitted $x_{1}(\bmod 2)$ to determine the transmitted x_{2}. Of course here, too, one may obtain lower rates than the $(1,1)$ pair and again approximate any point in the square, figure 3.

A third example has inputs x_{1} and x_{2} each from a ternary alphabet and outputs y_{1} and y_{2} each from a binary alphabet. Suppose that the probabilities of different output pairs (y_{1}, y_{2}), conditional on various input pairs (x_{1}, x_{2}), are given by table I. It may be seen that by using only $x_{1}=0$ at terminal 1 it is possible to send one bit per second in the $2-1$ direction using only the input letters 1 and 2 at terminal 2 , which then result with certainty in a and b respectively at terminal 1. Similarly, if x_{2} is held at 0 , transmission in the $1-2$ direction is possible at one bit per second. By dividing the time for use of these two strategies in the ratio λ to $1-\lambda$ it is possible to transmit in the two directions with

TABLE I

average rates $R_{1}=1-\lambda, R_{2}=\lambda$. Thus we can find codes approaching any point in the triangular region, figure 5 . It is not difficult to see, and will follow

Figure 5
from later results, that no point outside this triangle can be approached with codes of arbitrarily low error probability.

In this channel, communication in the two directions might be called incompatible. Forward communication is possible only if x_{2} is held at zero. Otherwise, all x_{1} letters are completely noisy. Conversely, backward communication is possible only if x_{1} is held at zero. The situation is a kind of discrete analogue to a common physical two-way system; a pair of radio telephone stations with "push-to-talk" buttons so arranged that when the button is pushed the local receiver is turned off.

A fourth simple example of a two-way channel, suggested by Blackwell, is the binary multiplying channel. Here all inputs and outputs are binary and the operation is defined $y_{1}=y_{2}=x_{1} x_{2}$. The region of approachable rate pairs for this channel is not known exactly, but we shall later find bounds on it.

In this paper we will study the coding properties of two-way channels. In particular, inner and outer bounds on the region of approachable rate pairs (R_{1}, R_{2}) will be found, together with bounds relating to the rate at which zero error probability can be approached. Certain topological properties of these bounds will be discussed and, finally, we will develop an expression describing the region of approachable rates in terms of a limiting process.

2. Summary of results

We will summarize here, briefly and somewhat roughly, the main results of the paper. It will be shown that for a memoryless discrete channel there exists a convex region G of approachable rates. For any point in G, say (R_{1}, R_{2}), there exist codes signalling with rates arbitrarily close to the point and with arbitrarily small error probability. This region is of the form shown typically in figure 6,

Figure 6
bounded by the middle curve G and the two axis segments. This curve can be described by a limiting expression involving mutual informations for long sequences of inputs and outputs.

In addition, we find an inner and outer bound, G_{I} and G_{O}, which are more easily evaluated, involving, as they do, only a maximizing process over single letters in the channel. G_{O} is the set of points (R_{12}, R_{21}) that may be obtained by assigning probabilities $P\left\{x_{1}, x_{2}\right\}$ to the input letters of the channel (an arbitrary joint distribution) and then evaluating

$$
\begin{align*}
& R_{12}=E\left(\log \frac{P\left\{x_{1} \mid x_{2}, y_{2}\right\}}{P\left\{x_{1} \mid x_{2}\right\}}\right)=\sum_{x_{1 x 2 y 2}} P\left\{x_{1} x_{2} y_{2}\right\} \log \frac{P\left\{x_{1} \mid x_{2}, y_{2}\right\}}{P\left\{x_{1} \mid x_{2}\right\}} \\
& R_{21}=E\left(\log \frac{P\left\{x_{2} \mid x_{1}, y_{1}\right\}}{P\left\{x_{2} \mid x_{1}\right\}}\right) \tag{1}
\end{align*}
$$

where $E(\mu)$ means expectation of μ. The inner bound G_{I} is found in a similar way but restricting the distribution to an independent one $P\left\{x_{1}, x_{2}\right\}=P\left\{x_{1}\right\} P\left\{x_{2}\right\}$. Then G_{I} is the convex hull of (R_{12}, R_{21}) points found under this restriction.

It is shown that in certain important cases these bounds are identical so the capacity region is then completely determined from the bounds. An example is also given (the binary multiplying channel) where there is a discrepancy between the bounds.

The three regions G_{I}, G and G_{O} are all convex and have the same intercepts on the axes. These intercepts are the capacities in the two directions when the other input letter is fixed at its best value [for example, x_{1} is held at the value which maximizes R_{21} under variation of $\left.P\left\{x_{2}\right\}\right]$. For any point inside G the error probabilities approach zero exponentially with the block length n. For any point
outside G at least one of the error probabilities for the two codes will be bounded away from zero by a bound independent of the block length.

Finally, these results may be partially generalized to channels with certain types of memory. If there exists an internal state of the channel such that it is possible to return to this state in a bounded number of steps (regardless of previous transmission) then there will exist again a capacity region G with similar properties. A limiting expression is given determining this region.

3. Basic definitions

A discrete memoryless two-way channel consists of a set of transition probabilities $P\left\{y_{1}, y_{2} \mid x_{1}, x_{2}\right\}$ where $x_{1}, x_{2}, y_{1}, y_{2}$ all range over finite alphabets (not necessarily the same).

A block code pair of length n for such a channel with M_{1} messages in the forward direction and M_{2} in the reverse direction consists of two sets of n functions

$$
\begin{align*}
& f_{0}\left(m_{1}\right), f_{1}\left(m_{1}, y_{11}\right), f_{2}\left(m_{1}, y_{11}, y_{12}\right), \cdots, f_{n-1}\left(m_{1}, y_{11}, \cdots, y_{1, n-1}\right) \\
& g_{0}\left(m_{2}\right), g_{1}\left(m_{2}, y_{21}\right), g_{2}\left(m_{2}, y_{21}, y_{22}\right), \cdots, g_{n-1}\left(m_{2}, y_{21}, \cdots, y_{2, n-1}\right) . \tag{2}
\end{align*}
$$

Here the f functions all take values in the x_{1} alphabet and the g functions in the x_{2} alphabet, while m_{1} takes values from 1 to M_{1} (the forward messages) and m_{2} takes values from 1 to M_{2} (the backward messages). Finally $y_{1 i}$, for $i=$ $1,2, \cdots, n-1$, takes values from the y_{1} alphabet and similarly for $y_{2 i}$. The f functions specify how the next input letter at terminal 1 should be chosen as determined by the message m_{1} to be transmitted and the observed outputs y_{11}, y_{12}, \cdots at terminal 1 up to the current time. Similarly the g functions determine how message m_{2} is encoded as a function of the information available at each time in the process.

A decoding system for a block code pair of length n consists of a pair of functions $\phi\left(m_{1}, y_{11}, y_{12}, \cdots, y_{1 n}\right)$ and $\psi\left(m_{2}, y_{21}, y_{22}, \cdots, y_{2 n}\right)$. These functions take values from 1 to M_{2} and 1 to M_{1} respectively.

The decoding function φ represents a way of deciding on the original transmitted message from terminal 2 given the information available at terminal 1 at the end of a block of n received letters, namely, $y_{11}, y_{12}, \cdots, y_{1 n}$ together with the transmitted message m_{1} at terminal 1 . Notice that the transmitted sequence $x_{11}, x_{12}, \cdots, x_{1 n}$ although known at terminal 1 need not enter as an argument in the decoding function since it is determined (via the encoding functions) by m_{1} and the received sequence.

We will assume, except when the contrary is stated, that all messages m_{1} are equiprobable (probability $1 / M_{1}$), that all messages m_{2} are equiprobable (probability $1 / M_{2}$), and that these events are statistically independent. We also assume that the successive operations of the channel are independent,

$$
\begin{align*}
P\left\{y_{11}, y_{12}, \cdots, y_{1 n}, y_{21}, y_{22}, \cdots, y_{2 n} \mid x_{11}, x_{12}, \cdots,\right. & \left.x_{1 n}, x_{21}, x_{22}, \cdots, x_{2 n}\right\} \tag{3}\\
& =\prod_{i=1}^{n} P\left\{y_{1 i}, y_{2 i} \mid x_{1 i}, x_{2 i}\right\}
\end{align*}
$$

This is the meaning of the memoryless condition. This implies that the probability of a set of outputs from the channel, conditional on the corresponding inputs, is the same as this probability conditional on these inputs and any previous inputs.

The signalling rates R_{1} and R_{2} for a block code pair with M_{1} and M_{2} messages for the two directions are defined by

$$
\begin{align*}
R_{1} & =\frac{1}{n} \log M_{1} \tag{4}\\
R_{2} & =\frac{1}{n} \log M_{2} .
\end{align*}
$$

Given a code pair and a decoding system, together with the conditional probabilities defining a channel and our assumptions concerning message probability, it is possible, in principle, to compute error probabilities for a code. Thus one could compute for each message pair the probabilities of the various possible received sequences, if these messages were transmitted by the given coding functions. Applying the decoding functions, the probability of an incorrect decoding could be computed. This could be averaged over all messages for each direction to arrive at final error probabilities $P_{e 1}$ and $P_{e 2}$ for the two directions.

We will say that a point $\left(R_{1}, R_{2}\right)$ belongs to the capacity region G of a given memoryless channel K if, given any $\epsilon>0$, there exists a block code and decoding system for the channel with signalling rates R_{1}^{*} and R_{2}^{*} satisfying $\left|R_{1}-R_{1}^{*}\right|<\epsilon$ and $\left|R_{2}-R_{2}^{*}\right|<\epsilon$ and such that the error probabilities satisfy $P_{e 1}<\epsilon$ and $P_{e 2}<\epsilon$.

4. Average mutual information rates

The two-way discrete memoryless channel with finite alphabets has been defined by a set of transition probabilities $P\left\{y_{1}, y_{2} \mid x_{1}, x_{2}\right\}$. Here x_{1} and x_{2} are the input letters at terminals 1 and 2 and y_{1} and y_{2} are the output letters. Each of these ranges over its corresponding finite alphabet.

If a set of probabilities $P\left\{x_{1}\right\}$ is assigned (arbitrarily) to the different letters of the input alphabet for x_{1} and another set of probabilities $P\left\{x_{2}\right\}$ to the alphabet for x_{2} (these two taken statistically independent) then there will be definite corresponding probabilities for y_{1} and y_{2} and, in fact, for the set of four random variables $x_{1}, x_{2}, y_{1}, y_{2}$, namely,

$$
\begin{align*}
P\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} & =P\left\{x_{1}\right\} P\left\{x_{2}\right\} P\left\{y_{1}, y_{2} \mid x_{1}, x_{2}\right\} \tag{5}\\
P\left\{y_{1}\right\} & =\sum_{x_{1}, x_{2}, y_{2}} P\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\},
\end{align*}
$$

and so forth.
Thinking first intuitively, and in analogue to the one-way channel, we might think of the rate of transmission from x_{1} to the terminal 2 as given by $H\left(x_{1}\right)$ $H\left(x_{1} \mid x_{2}, y_{2}\right)$, that is, the uncertainty or entropy of x_{1} less its entropy conditional on what is available at terminal 2 , namely, y_{2} and x_{2}. Thus, we might write

$$
\begin{align*}
R_{12} & =H\left(x_{1}\right)-H\left(x_{1} \mid x_{2}, y_{2}\right) \tag{6}\\
& =E\left[\log \frac{P\left\{x_{1}, x_{2}, y_{2}\right\}}{P\left\{x_{1}\right\} P\left\{x_{2}, y_{2}\right\}}\right] \\
& =E\left[\log \frac{P\left\{x_{1} \mid x_{2}, y_{2}\right\}}{P\left\{x_{1}\right\}}\right] \\
R_{21} & =H\left(x_{2}\right)-H\left(x_{2} \mid x_{1}, y_{1}\right) \tag{7}\\
& =E\left[\log \frac{P\left\{x_{1}, x_{2}, y_{1}\right\}}{P\left\{x_{2}\right\} P\left\{x_{1}, y_{1}\right\}}\right] \\
& =E\left[\log \frac{P\left\{x_{2} \mid x_{1}, y_{1}\right\}}{P\left\{x_{2}\right\}}\right] .
\end{align*}
$$

These are the average mutual informations with the assigned input probabilities between the input at one terminal and the input-output pair at the other terminal. We might expect, then, that by suitable coding it should be possible to send in the two directions simultaneously with arbitrarily small error probabilities and at rates arbitrarily close to R_{12} and R_{21}. The codes would be based on these probabilities $P\left\{x_{1}\right\}$ and $P\left\{x_{2}\right\}$ in generalization of the one-way channel. We will show that in fact it is possible to find codes based on the probabilities $P\left\{x_{1}\right\}$ and $P\left\{x_{2}\right\}$ which do this.

However the capacity region may be larger than the set of rates available by this means. Roughly speaking, the difference comes about because of the probability of having x_{1} and x_{2} dependent random variables. In this case the appropriate mutual informations are given by $H\left(x_{2} \mid x_{1}\right)-H\left(x_{2} \mid x_{1}, y_{1}\right)$ and $H\left(x_{1} \mid x_{2}\right)-$ $H\left(x_{1} \mid x_{2}, y_{2}\right)$. The above expressions for R_{21} and R_{12} of course reduce to these when x_{1} and x_{2} are independent.

5. The distribution of information

The method we follow is based on random codes using techniques similar to those used in [1] for the one-way channel. Consider a sequence of n uses of the channel or, mathematically, the product probability space. The inputs are $X_{1}=\left(x_{11}, x_{12}, \cdots, x_{1 n}\right)$ and $X_{2}=\left(x_{21}, x_{22}, \cdots, x_{2 n}\right)$ and the outputs $Y_{1}=$ ($y_{11}, y_{12}, \cdots, y_{1 n}$) and $Y_{2}=\left(y_{21}, y_{22}, \cdots, y_{2 n}\right)$, that is, sequences of n choices from the corresponding alphabets.

The conditional probabilities for these blocks are given by

$$
\begin{equation*}
P\left\{Y_{1}, Y_{2} \mid X_{1}, X_{2}\right\}=\prod_{k} P\left\{y_{1 k}, y_{2 k} \mid x_{1 k}, x_{2 k}\right\} \tag{8}
\end{equation*}
$$

This uses the assumption that the channel is memoryless, or successive operations independent. We also associate a probability measure with input blocks X_{1} and X_{2} given by the product measure of that taken for x_{1}, x_{2}. Thus

$$
\begin{align*}
& P\left\{X_{1}\right\}=\prod_{k} P\left\{x_{1 k}\right\} \\
& P\left\{X_{2}\right\}=\prod_{k} P\left\{x_{2 k}\right\} \tag{9}
\end{align*}
$$

It then follows that other probabilities are also the products of those for the individual letters. Thus, for example,

$$
\begin{align*}
P\left\{X_{1}, X_{2}, Y_{1}, Y_{2}\right\} & =\prod_{k} P\left\{x_{1 k}, x_{2 k}, y_{1 k}, y_{2 k}\right\} \\
P\left\{X_{2} \mid X_{1}, Y_{1}\right\} & =\prod_{k} P\left\{x_{2 k} \mid x_{1 k}, y_{1 k}\right\} \tag{10}
\end{align*}
$$

The (unaveraged) mutual information between, say, X_{1} and the pair X_{2}, Y_{2} may be written as a sum, as follows:

$$
\begin{align*}
I\left(X_{1} ; X_{2}, Y_{2}\right) & =\log \frac{P\left\{X_{1}, X_{2}, Y_{2}\right\}}{P\left\{X_{1}\right\} P\left\{X_{2}, Y_{2}\right\}}=\log \frac{\prod_{k} P\left\{x_{1 k}, x_{2 k}, y_{2 k}\right\}}{\prod_{k} P\left\{x_{1 k}\right\} \prod_{k} P\left\{x_{2 k}, y_{2 k}\right\}} \\
& =\sum_{k} \log \frac{P\left\{x_{1 k}, x_{2 k}, y_{2 k}\right\}}{P\left\{x_{1 k}\right\} P\left\{x_{2 k}, y_{2 k}\right\}} \tag{11}\\
I\left(X_{1} ; X_{2}, Y_{2}\right) & =\sum_{k} I\left(x_{1 k} ; x_{2 k}, y_{2 k}\right) .
\end{align*}
$$

Thus, the mutual information is, as usual in such independent situations, the sum of the individual mutual informations. Also, as usual, we may think of the mutual information as a random variable. Here $I\left(X_{1} ; X_{2}, Y_{2}\right)$ takes on different values with probabilities given by $P\left\{X_{1}, X_{2}, Y_{2}\right\}$. The distribution function for $I\left(X_{1} ; X_{2}, Y_{2}\right)$ will be denoted by $\rho_{12}(Z)$ and similarly for $I\left(X_{2} ; X_{1}, Y_{1}\right)$

$$
\begin{align*}
& \rho_{12}(Z)=P\left\{I\left(X_{1} ; X_{2}, Y_{2}\right) \leqq Z\right\} \\
& \rho_{21}(Z)=P\left\{I\left(X_{2} ; X_{1}, Y_{1}\right) \leqq Z\right\} \tag{12}
\end{align*}
$$

Since each of the random variables $I\left(X_{1} ; X_{2}, Y_{2}\right)$ and $I\left(X_{2} ; X_{1}, Y_{1}\right)$ is the sum of n independent random variables, each with the same distribution, we have the familiar statistical situation to which one may apply various central limit theorems and laws of large numbers. The mean of the distributions ρ_{12} and ρ_{21} will be $n R_{12}$ and $n R_{21}$ respectively and the variances n times the corresponding variances for one letter. As $n \rightarrow \infty, \rho_{12}\left[n\left(R_{12}-\epsilon\right)\right] \rightarrow 0$ for any fixed $\epsilon>0$, and similarly for ρ_{21}. In fact, this approach is exponential in n; $\rho_{12}\left[n\left(R_{12}-\epsilon\right)\right] \leqq$ $\exp [-A(\epsilon) n]$.

6. Random codes for the two-way channel

After these preliminaries we now wish to prove the existence of codes with certain error probabilities bounded by expressions involving the distribution functions ρ_{12} and ρ_{21}.

We will construct an ensemble of codes or, more precisely, of code pairs, one
code for the $1-2$ direction and another for the $2-1$ direction. Bounds will be established on the error probabilities $P_{e 1}$ and $P_{e 2}$ averaged over the ensemble, and from these will be shown the existence of particular codes in the ensemble with related bounds on their error probabilities.

The random ensemble of code pairs for such a two-way channel with M_{1} words in the $1-2$ code and M_{2} words in the $2-1$ code is constructed as follows. The M_{1} integers $1,2, \cdots, M_{1}$ (the messages of the first code) are mapped in all possible ways into the set of input words X_{1} of length n. Similarly the integers $1,2, \cdots, M_{2}$ (the messages of the second code) are mapped in all possible ways into the set of input words X_{2} of length n.

If there were a_{1} possible input letters at terminal 1 and a_{2} input letters at terminal 2, there will be a_{1}^{n} and a_{2}^{n} input words of length n and $a_{1}^{n M_{1}}$ mappings in the first code and $a_{2}^{n M_{2}}$ in the second code. We consider all pairs of these codes, a total of $a_{1}^{n M_{1}} a_{2}^{n M_{2}}$ pairs.

Each code pair is given a weighting, or probability, equal to the probability of occurrence of that pair if the two mappings were done independently and an integer is mapped into a word with the assigned probability of that word. Thus, a code pair is given a weighting equal to the product of the probabilities associated with all the input words that the integers are mapped into for both codes. This set of code pairs with these associated probabilities we call the random ensemble of code pairs based on the assigned probabilities $P\left\{X_{1}\right\}$ and $P\left\{X_{2}\right\}$.

Any particular code pair of the ensemble could be used to transmit information, if we agreed upon a method of decoding. The method of decoding will here consist of two functions $\phi\left(X_{1}, Y_{1}\right)$ and $\psi\left(X_{2}, Y_{2}\right)$, a special case of that defined above. Here X_{1} varies over the input words of length n at terminal 1, and Y_{1} over the possible received blocks of length n. The function ϕ takes values from 1 to M_{2} and represents the decoded message for a received Y_{1} if X_{1} was transmitted. (Of course, X_{1} is used in the decoding procedure in general since it may influence Y_{1} and is, therefore, pertinent information for best decoding.)

Similarly, $\psi\left(X_{2}, Y_{2}\right)$ takes values from 1 to M_{1} and is a way of deciding on the transmitted message m_{1} on the basis of information available at terminal 2. It should be noted here that the decoding functions, ϕ and ψ, need not be the same for all code pairs in the ensemble.

We also point out that the encoding functions for our random ensemble are more specialized than the general case described above. The sequence of input letters X_{1} for a given message m_{1} do not depend on the received letters at terminal 1 . In any particular code of the ensemble there is a strict mapping from messages to input sequences.

Given an ensemble of code pairs as described above and decoding functions, one could compute for each particular code pair two error probabilities for the two codes: $P_{e 1}$, the probability of error in decoding the first code, and $P_{e 2}$ that for the second. Here we are assuming that the different messages in the first code occur with equal probability $1 / M_{1}$, and similarly for the second.

By the average error probabilities for the ensemble of code pairs we mean the averages $E\left(P_{e 1}\right)$ and $E\left(P_{e 2}\right)$ where each probability of error for a particular code is weighted according to the weighting factor or probability associated with the code pair. We wish to describe a particular method of decoding, that is, a choice of ϕ and ψ, and then place upper bounds on these average error probabilities for the ensemble.

7. Error probability for the ensemble of codes

Theorem 1. Suppose probability assignments $P\left\{X_{1}\right\}$ and $P\left\{X_{2}\right\}$ in a discrete memoryless two-way channel produce information distribution functions $\rho_{12}(Z)$ and $\rho_{21}(Z)$. Let $M_{1}=\exp \left(R_{1} n\right)$ and $M_{2}=\exp \left(R_{2} n\right)$ be arbitrary integers and θ_{1} and θ_{2} be arbitrary positive numbers. Then the random ensemble of code pairs with M_{1} and M_{2} messages has (with appropriate decoding functions) average error probabilities bounded as follows:

$$
\begin{align*}
& E\left(P_{e 1}\right) \leqq \rho_{12}\left[n\left(R_{1}+\theta_{1}\right)\right]+e^{-n \theta_{1}} \\
& E\left(P_{e 2}\right) \leqq \rho_{21}\left[n\left(R_{2}+\theta_{2}\right)\right]+e^{-n \theta_{2}} . \tag{13}
\end{align*}
$$

There will exist in the ensemble at least one code pair whose individual error probabilities are bounded by two times these expressions, that is, satisfying

$$
\begin{align*}
& P_{e 1} \leqq 2 \rho_{12}\left[n\left(R_{1}+\theta_{1}\right)\right]+2 e^{-n \theta_{1}} \\
& P_{e 2} \leqq 2 \rho_{21}\left[n\left(R_{2}+\theta_{2}\right)\right]+2 e^{-n \theta_{2}} \tag{14}
\end{align*}
$$

This theorem is a generalization of theorem 1 in [1] which gives a similar bound on P_{e} for a one-way channel. The proof for the two-way channel is a generalization of that proof.

The statistical situation here is quite complex. There are several statistical events involved: the choice of messages m_{1} and m_{2}, the choice of code pair in the ensemble of code pairs, and finally the statistics of the channel itself which produces the output words Y_{1} and Y_{2} according to $P\left\{Y_{1}, Y_{2} \mid X_{1}, X_{2}\right\}$. The ensemble error probabilities we are calculating are averages over all these statistical events.

We first define decoding systems for the various codes in the ensemble. For a given θ_{2}, define for each pair X_{1}, Y_{1} a corresponding set of words in the X_{2} space denoted by $S\left(X_{1}, Y_{1}\right)$ as follows:

$$
\begin{equation*}
S\left(X_{1}, Y_{1}\right)=\left\{X_{2} \left\lvert\, \log \frac{P\left\{X_{1}, X_{2}, Y_{2}\right\}}{P\left\{X_{2}\right\} P\left\{X_{1}, Y_{1}\right\}}>n\left(R_{2}+\theta_{2}\right)\right.\right\} . \tag{15}
\end{equation*}
$$

That is, $S\left(X_{1}, Y_{1}\right)$ is the set of X_{2} words whose mutual information with the particular pair (X_{1}, Y_{1}) exceeds a certain level, $n\left(R_{2}+\theta_{2}\right)$. In a similar way, we define a set $S^{\prime}\left(X_{2}, Y_{2}\right)$ of X_{1} words for each X_{2}, Y_{2} pair as follows:

$$
\begin{equation*}
S^{\prime}\left(X_{2}, Y_{2}\right)=\left\{X_{1} \left\lvert\, \log \frac{P\left\{X_{1}, X_{2}, Y_{1}\right\}}{P\left\{X_{1}\right\} P\left\{X_{2}, Y_{2}\right\}}>n\left(R_{1}+\theta_{1}\right)\right.\right\} \tag{16}
\end{equation*}
$$

We will use these sets S and S^{\prime} to define the decoding procedure and to aid in overbounding the error probabilities. The decoding process will be as follows. In any particular code pair in the random ensemble, suppose message m_{1} is sent and this is mapped into input word X_{1}. Suppose that Y_{1} is received at terminal 1 in the corresponding block of n letters. Consider the subset of X_{2} words, $S\left(X_{1}, Y_{1}\right)$. Several situations may occur. (1) There is no message m_{2} mapped into the subset $S\left(X_{1}, Y_{1}\right)$ for the code pair in question. In this case, X_{1}, Y_{1} is decoded (conventionally) as message number one. (2) There is exactly one message mapped into the subset. In this case, we decode as this particular message. (3) There are more than one such messages. In this case, we decode as the smallest numbered such message.

The error probabilities that we are estimating would normally be thought of as calculated in the following manner. For each code pair one would calculate the error probabilities for all messages m_{1} and m_{2}, and from their averages get the error probabilities for that code pair. Then these error probabilities are averaged over the ensemble of code pairs, using the appropriate weights or probabilities. We may, however, interchange this order of averaging. We may consider the cases where a particular \bar{m}_{1} and \bar{m}_{2} are the messages and these are mapped into particular \bar{X}_{1} and \bar{X}_{2}, and the received words are \bar{Y}_{1} and \bar{Y}_{2}. There is still, in the statistical picture, the range of possible code pairs, that is, mappings of the other $M_{1}-1$ messages for one code and $M_{2}-1$ for the other. We wish to show that, averaged over this subset of codes, the probabilities of any of these messages being mapped into subsets $S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)$ and $S\left(\bar{X}_{1}, \bar{Y}_{1}\right)$ respectively do not exceed $\exp \left(-n \theta_{1}\right)$ and $\exp \left(-n \theta_{2}\right)$.

Note first that if X_{1} belongs to the set $S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)$ then by the definition of this set

$$
\begin{gather*}
\log \frac{P\left\{X_{1}, \bar{X}_{2}, \bar{Y}_{2}\right\}}{P\left\{\bar{X}_{1}\right\} P\left\{\bar{X}_{2}, \bar{Y}_{2}\right\}}>n\left(R_{1}+\theta_{1}\right) \\
P\left\{X_{1} \mid \bar{X}_{2}, \bar{Y}_{2}\right\}>P\left\{X_{1}\right\} e^{n\left(R_{1}+\theta_{1}\right)} \tag{17}
\end{gather*}
$$

Now sum each side over the set of X_{1} belonging to $S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)$ to obtain

$$
\begin{equation*}
1 \geqq \sum_{X_{1} \in S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)} P\left\{X_{1} \mid \bar{X}_{2}, \bar{Y}_{2}\right\}>e^{n\left(R_{1}+\theta_{1}\right)} \sum_{X_{1} \in S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)} P\left\{X_{1}\right\} . \tag{18}
\end{equation*}
$$

The left inequality here holds since a sum of disjoint probabilities cannot exceed one. The sum on the right we may denote by $P\left\{S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)\right\}$. Combining the first and last members of this relation

$$
\begin{equation*}
P\left\{S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)\right\}<e^{-n\left(R_{1}+\theta_{1}\right)} \tag{19}
\end{equation*}
$$

That is, the total probability associated with any set $S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)$ is bounded by an expression involving n, R_{1} and θ_{1} but independent of the particular \bar{X}_{2}, \bar{Y}_{2}.

Now recall that the messages were mapped independently into the input words using the probabilities $P\left\{X_{1}\right\}$ and $P\left\{X_{2}\right\}$. The probability of a particular message being mapped into $S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)$ in the ensemble of code pairs is just $P\left\{S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)\right\}$. The probability of being in the complementary set is $1-$
$P\left\{S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)\right\}$. The probability that all messages other than \bar{m}_{1} will be mapped into this complementary set is

$$
\begin{align*}
{\left[1-P\left\{S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)\right\}\right]^{M_{1}-1} } & \geqq 1-\left(M_{1}-1\right) P^{\prime}\left\{S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)\right\} \tag{20}\\
& \geqq 1-M_{1} P\left\{S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)\right\} \\
& \geqq 1-M_{1} e^{-n\left(R_{1}+\theta_{1}\right)} \\
& =1-e^{-n \theta_{1}}
\end{align*}
$$

Here we used the inequality $(1-x)^{p} \geqq 1-p x$, the relation (19) and finally the fact that $M_{1}=\exp \left(n R_{1}\right)$.

We have established, then, that in the subset of cases being considered (\bar{m}_{1} and \bar{m}_{2} mapped into \bar{X}_{1} and \bar{X}_{2} and received as \bar{Y}_{1} and \bar{Y}_{2}), with probability at least $1-\exp \left(-n \theta_{1}\right)$, there will be no other messages mapped into $S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)$. A similar calculation shows that with probability exceeding $1-\exp \left(-n \theta_{2}\right)$ there will be no other messages mapped into $S\left(\bar{X}_{1}, \bar{Y}_{1}\right)$. These bounds, as noted, are independent of the particular \bar{X}_{1}, \bar{Y}_{1} and \bar{X}_{2}, \bar{Y}_{2}.

We now bound the probability of the actual message \bar{m}_{1} being within the subset $S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)$. Recall that from the definition of $\rho_{12}(Z)$

$$
\begin{equation*}
\rho_{12}\left[n\left(R_{1}+\theta_{1}\right)\right]=P\left\{\log \frac{P\left\{X_{1}, X_{2}, Y_{2}\right\}}{P\left\{X_{1}\right\} P\left\{X_{2}, Y_{2}\right\}} \leqq n\left(R_{1}+\theta_{1}\right)\right\} \tag{21}
\end{equation*}
$$

In the ensemble of code pairs a message \bar{m}_{1}, say, is mapped into words X_{1} with probabilities just equal to $P\left\{X_{1}\right\}$. Consequently, the probability in the full ensemble of code pairs, message choices and channel statistics, that the actual message is mapped into $S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)$ is precisely $1-\rho_{12}\left[n\left(R_{1}+\theta_{1}\right)\right]$.

The probability that the actual message is mapped outside $S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)$ is thercfore given by $\rho_{12}\left[n\left(R_{1}+\theta_{1}\right)\right]$ and the probability that there are any other messages mapped into $S^{\prime}\left(\bar{X}_{2}, \bar{Y}_{2}\right)$ is bounded as shown before by $\exp \left(-n \theta_{1}\right)$. The probability that either of these events is true is then certainly bounded by $\rho_{12}\left[n\left(R_{1}+\theta_{1}\right)\right]+\exp \left(-n \theta_{1}\right)$; but this is then a bound on $E\left(P_{\text {el }}\right)$, since if neither event occurs the decoding process will correctly decode.

Of course, the same argument with interchanged indices gives the corresponding bound for $E\left(P_{e 2}\right)$. This proves the first part of the theorem.

With regard to the last statement of the theorem, we will first prove a simple combinatorial lemma which is useful not only here but in other situations in coding theory.

Lemma. Suppose we have a set of objects $B_{1}, B_{2}, \cdots, B_{n}$ with associated probabilities $P_{1}, P_{2}, \cdots, P_{n}$, and a number of numerically valued properties (functions) of the objects $f_{1}, f_{2}, \cdots, f_{d}$. These are all nonnegative, $f_{i}\left(B_{j}\right) \geqq 0$, and we know the averages A_{i} of these properties over the objects,

$$
\begin{equation*}
\sum_{j} P_{j} f_{i}\left(B_{j}\right)=A_{i}, \quad i=1,2, \cdots, d \tag{22}
\end{equation*}
$$

Then there exists an object B_{p} for which

$$
\begin{equation*}
f_{i}\left(B_{p}\right) \leqq d A_{i}, \quad i=1,2, \cdots, d . \tag{23}
\end{equation*}
$$

More generally, given any set of $K_{i}>0$ satisfying $\sum_{i=1}^{d}\left(1 / K_{i}\right) \leqq 1$, then there exists an object B_{p} with

$$
\begin{equation*}
f_{i}\left(B_{p}\right) \leqq K_{i} A_{i}, \quad i=1,2, \cdots, d \tag{24}
\end{equation*}
$$

Proof. The second part implies the first by taking $K_{i}=d$. To prove the second part let Q_{i} be the total probability of objects B for which $f_{i}(B)>K_{i} A_{i}$. Now the average $A_{i}>Q_{i} K_{i} A_{i}$ since $Q_{i} K_{i} A_{i}$ is contributed by the B_{i} with $f(B)>K_{i} A_{i}$ and all the remaining B have f_{i} values $\geqq 0$. Hence

$$
\begin{equation*}
Q_{i}<\frac{1}{K_{i}}, \quad i=1,2, \cdots, d . \tag{25}
\end{equation*}
$$

The total probability Q of objects violating any of the conditions is less than or equal to the sum of the individual Q_{i}, so that

$$
\begin{equation*}
Q<\sum_{i=1}^{d} \frac{1}{K_{i}} \leqq 1 . \tag{26}
\end{equation*}
$$

Hence there is at least one object not violating any of the conditions, concluding the proof.

For example, suppose we know that a room is occupied by a number of people whose average age is 40 and average height 5 feet. Here $d=2$, and using the simpler form of the theorem we can assert that there is someone in the room not over 80 years old and not over ten feet tall, even though the room might contain aged midgets and youthful basketball players. Again, using $K_{1}=8 / 3$, $K_{2}=8 / 5$, we can assert the existence of an individual not over 8 feet tall and not over $1062 / 3$ years old.
Returning to the proof of theorem 1, we can now establish the last sentence. We have a set of objects, the code pairs, and two properties of each object, its error probability $P_{e 1}$ for the code from 1 to 2 and its error probability $P_{\epsilon 2}$ for the code from 2 to 1 . These are nonnegative and their averages are bounded as in the first part of theorem 1. It follows from the combinatorial result that there exists at least one particular code pair for which simultaneously

$$
\begin{align*}
& P_{e 1} \leqq 2\left\{\rho_{12}\left[n\left(R_{1}+\theta_{1}\right)\right]+e^{-n \theta_{1}}\right\} \tag{27}\\
& P_{e 2} \leqq 2\left\{\rho_{21}\left[n\left(R_{2}+\theta_{2}\right)\right]+e^{-n \theta_{2}}\right\} .
\end{align*}
$$

This concludes the proof of theorem 1.
It is easily seen that this theorem proves the possibility of code pairs arbitrarily close in rates R_{1} and R_{2} to the mean mutual information per letter R_{12} and R_{21} for any assigned $P\left\{x_{1}\right\}$ and $P\left\{x_{2}\right\}$ and with arbitrarily small probability of error. In fact, let $R_{12}-R_{1}=R_{21}-R_{2}=\epsilon>0$ and in the theorem take $\theta_{1}=$ $\theta_{2}=\epsilon / 2$. Since $\rho_{12}\left[n\left(R_{12}-\epsilon / 2\right)\right] \rightarrow 0$ and, in fact, exponentially fast with n (the distribution function $\epsilon n / 2$ to the left of the mean, of a sum of n random variables) the bound on $P_{e 1}$ approaches zero with increasing n exponentially fast. In a similar way, so does the bound on $P_{e 2}$. By choosing, then, a sequence of the M_{1} and M_{2} for increasing n which approach the desired rates R_{1} and R_{2} from below, we obtain the desired result, which may be stated as follows.

Theorem 2. Suppose in a two-way memoryless channel K an assignment of probabilities to the input letters $P\left\{x_{1}\right\}$ and $P\left\{x_{2}\right\}$ gives average mutual informations in the two directions

$$
\begin{align*}
& R_{12}=E\left(\log \frac{P\left\{x_{1} \mid x_{2}, y_{2 j}\right\}}{P\left\{x_{1}\right\}}\right) \tag{28}\\
& R_{21}=E\left(\log \frac{P\left\{x_{2} \mid x_{1}, y_{1}\right\}}{P\left\{x_{2}\right\}}\right)
\end{align*}
$$

Then given $\epsilon>0$ there exists a code pair for all sufficiently large block length n with signalling rates in the two directions greater than $R_{12}-\epsilon$ and $R_{21}-\epsilon$ respectively, and with error probabilities $P_{e 1} \leqq \exp [-A(\epsilon) n], P_{e 2} \leqq \exp [-A(\epsilon) n]$ where $A(\epsilon)$ is positive and independent of n.
By trying different assignments of letter probabilities and using this result, one obtains various points in the capacity region. Of course, to obtain the best rates available from this theorem we should seek to maximize these rates. This is most naturally done à la Lagrange by maximizing $R_{12}+\lambda R_{21}$ for various positive λ.

8. The convex hull G_{1} as an inner bound of the capacity region

In addition to the rates obtained this way we may construct codes which are mixtures of codes obtained by this process. Suppose one assignment $P\left\{x_{1}\right\}$, $P\left\{x_{2}\right\}$ gives mean mutual informations R_{12}, R_{21} and a second assignment $P^{\prime}\left\{x_{1}\right\}$, $P^{\prime}\left\{x_{2}\right\}$ gives $R_{12}^{\prime}, R_{21}^{\prime}$. Then we may find a code of (sufficiently large) length n for the first assignment with error probabilities $<\delta$ and rate discrepancy less than or equal to ϵ and a second code of length n^{\prime} based on $P^{\prime}\left\{x_{1}\right\}, P^{\prime}\left\{x_{2}\right\}$ with the same δ and ϵ. We now consider the code of length $n+n^{\prime}$ with $M_{1} M_{1}^{\prime}$ words in the forward direction, and $M_{2} M_{2}^{\prime}$ in the reverse, consisting of all words of the first code followed by all words for the same direction in the second code. This has signalling rates R_{1}^{*} and R_{2}^{*} equal to the weighted average of rates for the original codes $\left[R_{1}^{*}=n R_{1} /\left(n+n^{\prime}\right)+n^{\prime} R_{1}^{\prime} /\left(n+n^{\prime}\right) ; R_{2}^{*}=n R_{2} /\left(n+n^{\prime}\right)+\right.$ $\left.n^{\prime} R_{2}^{\prime} /\left(n+n^{\prime}\right)\right]$ and consequently its rates are within ϵ of the weighted averages, $\left|R_{1}^{*}-n R_{12} /\left(n+n^{\prime}\right)-n^{\prime} R_{12}^{\prime} /\left(n+n^{\prime}\right)\right|<\epsilon$ and similarly. Furthermore, its error probability is bounded by 2δ, since the probability of either of two events (an error in either of the two parts of the code) is bounded by the sum of the original probabilities. We can construct such a mixed code for any sufficiently large n and n^{\prime}. Hence by taking these large enough we can approach any weighted average of the given rates and simultaneously approach zero error probability exponentially fast. It follows that we can annex to the set of points found by the assignment of letter probabilities all points in the convex hull of this set. This actually does add new points in some cases as our example, of a channel (table I) with incompatible transmission in the two directions, shows. By mixing the codes for assignments which give the points $(0,1)$ and $(1,0)$ in equal proportions,
we obtain the point $(1 / 2,1 / 2)$. There is no single letter assignment giving this pair of rates. We may summarize as follows.

Theorem 3. Let G_{I} be the convex hull of points $\left(R_{12}, R_{21}\right)$

$$
\begin{align*}
R_{12} & =E\left(\log \frac{P\left\{x_{1} \mid x_{2}, y_{2}\right\}}{P\left\{x_{1}\right\}}\right) \tag{29}\\
R_{21} & =E\left(\log \frac{P\left\{x_{2} \mid x_{1}, y_{1}\right\}}{P\left\{x_{2}\right\}}\right)
\end{align*}
$$

when $P\left\{x_{1}\right\}$ and $P\left\{x_{2}\right\}$ are given various probability assignments. All points of G_{I} are in the capacity region. For any point $\left(R_{1}, R_{2}\right)$ in G_{I} and any $\epsilon>0$ we can find codes whose signalling rates are within ϵ of R_{1} and R_{2} and whose error probabilities in both directions are less than $\exp [-A(\epsilon) n]$ for all sufficiently large n, and some positive $A(\epsilon)$.

It may be noted that the convex hull G_{I} in this theorem is a closed set (contains all its limit points). This follows from the continuity of R_{12} and R_{21} as functions of the probability assignments $P\left\{x_{1}\right\}$ and $P\left\{x_{2}\right\}$. Furthermore if G_{I} contains a point (R_{1}, R_{2}) it contains the projections ($R_{1}, 0$) and ($0, R_{2}$). This will now be proved.

It will clearly follow if we can show that the projection of any point obtained by a letter probability assignment is also in G_{I}. To show this, suppose $P\left\{x_{1}\right\}$ and $P\left\{x_{2}\right\}$ give the point (R_{12}, R_{21}). Now R_{12} is the average of the various particular R_{12} when x_{2} is given various particular values. Thus

$$
\begin{equation*}
R_{12}=\sum_{x_{2}} P\left\{x_{2}\right\} \sum_{x_{1}, y_{2}} P\left\{x_{1}, y_{2} \mid x_{2}\right\} \log \frac{P\left\{x_{1} \mid x_{2}, y_{2}\right\}}{P\left\{x_{1}\right\}} \tag{30}
\end{equation*}
$$

There must exist, then, a particular x_{2}, say x_{2}^{*}, for which the inner sum is at least as great as the average, that is, for which

$$
\begin{align*}
\sum_{x_{1}, y_{2}} P\left\{x_{1}, y_{2} \mid x_{2}^{*}\right\} \log \frac{P\left\{x_{1} \mid x_{2}^{*}, y_{2}\right\}}{P\left\{x_{1}\right\}} & \tag{31}\\
& \geqq \sum_{x_{2}} P\left\{x_{2}\right\} \sum_{x_{1}, y_{2}} P\left\{x_{1}, y_{2} \mid x_{2}\right\} \log \frac{P\left\{x_{1} \mid x_{2}, y_{2}\right\}}{P\left\{x_{1}\right\}}
\end{align*}
$$

The assignment $P\left\{x_{1} \mid x_{2}^{*}\right\}$ for letter probabilities x_{1} and the assignment $P\left\{x_{2}\right\}=1$ if $x_{2}=x_{2}^{*}$ and 0 otherwise, now gives a point on the horizontal axis below or to the right of the projection of the given point R_{12}, R_{21}. Similarly, we can find an x_{1}^{*} such that the assignment $P\left\{x_{2} \mid x_{1}^{*}\right\}$ for x_{2} and $P\left\{x_{1}^{*}\right\}=1$ gives a point on the vertical axis equal to or above the projection of R_{12}, R_{21}. Note also that the assignment $P\left\{x_{1}^{*}\right\}=1, P\left\{x_{2}^{*}\right\}=1$ gives the point (0,0). By suitable mixing of codes obtained for these four assignments one can approach any point of the quadrilateral defined by the corresponding pairs of rates, and in particular any point in the rectangle subtended by R_{12}, R_{21}. It follows from these remarks that the convex hull G_{I} is a region of the form shown typically in figure 7 bounded by a horizontal segment, a convex curve, a vertical segment, and two segments of the axes. Of course, any of these parts may be of zero length.

The convex hull G_{I} is, as we have seen, inside the capacity region and we will refer to it as the inner bound.

Figure 7
It is of some interest to attempt a sharper evaluation of the rate of improvement of error probability with increasing code length n. This is done in the appendix and leads to a generalization of theorem 2 in [1]. The bound we arrive at is based on logarithms of moment generating functions.

9. An outer bound on the capacity region

While in some cases the convex hull G_{I}, the inner bound defined above, is actually the capacity region this is not always the case. By an involved calculation R. G. Gallager has shown that in the binary multiplying channel the inner bound is strictly interior to the capacity region. However a partial converse to theorem 3 and an outer bound on the capacity region can be given. Suppose we have a code starting at time zero with messages m_{1} and m_{2} at the two terminals. After n operations of the channel, let Y_{1} and Y_{2} be the received blocks at the two terminals (sequences of n letters), and let $x_{1}, x_{2}, y_{1}, y_{2}$ be the next transmitted and received letters. Consider the change in "equivocation" of message at the two terminals due to the next received letter. At terminal 2, for example, this change is (making some obvious reductions)

$$
\begin{align*}
\Delta & =H\left(m_{1} \mid m_{2}, Y_{2}\right)-H\left(m_{1} \mid m_{2}, Y_{2}, y_{2}\right) \tag{32}\\
& =E\left[\log \frac{P\left\{m_{2}, Y_{2}\right\}}{P\left\{m_{1}, m_{2}, Y_{2}\right\}}\right]-E\left[\log \frac{P\left\{m_{2}, Y_{2}, y_{2}\right\}}{P\left\{m_{1}, m_{2}, Y_{2}, y_{2}\right\}}\right] \\
& =E\left[\log \frac{P\left\{y_{2} \mid m_{1}, m_{2}, Y_{2}\right\}}{P\left\{y_{2} \mid x_{2}\right\}} \frac{P\left\{y_{2} \mid x_{2}\right\}}{P\left\{y_{2} \mid Y_{2}, m_{2}\right\}}\right] .
\end{align*}
$$

Now $H\left(y_{2} \mid m_{1}, m_{2}, Y_{2}\right) \geqq H\left(y_{2} \mid m_{1}, m_{2}, Y_{1}, Y_{2}\right)=H\left(y_{2} \mid x_{1}, x_{2}\right)$ since adding a conditioning variable cannot increase an entropy and since $P\left\{y_{2} \mid m_{1}, m_{2}, Y_{1}, Y_{2}\right\}=$ $P\left\{y_{2} \mid x_{1}, x_{2}\right\}$.

Also $H\left(y_{2} \mid x_{2}\right) \geqq H\left(y_{2} \mid Y_{2}, m_{2}\right)$ since x_{2} is a function of Y_{2} and m_{2} by the coding function. Therefore

$$
\begin{align*}
\Delta & \leqq E\left(\log \frac{P\left\{y_{2} \mid x_{1}, x_{2}\right\}}{P\left\{y_{2} \mid x_{2}\right\}}\right)+H\left(y_{2} \mid Y_{2}, m_{2}\right)-H\left(y_{2} \mid x_{2}\right) \tag{33}\\
\Delta & \leqq E\left(\log \frac{P\left\{y_{2} \mid x_{1}, x_{2}\right\}}{P\left\{y_{2} \mid x_{2}\right\}}\right)=E\left(\log \frac{P\left\{y_{2}, x_{1}, x_{2}\right\} P\left\{x_{2}\right\}}{P\left\{x_{2}, y_{2}\right\} P\left\{x_{1}, x_{2}\right\}}\right) \tag{34}\\
& =E\left(\log \frac{P\left\{x_{1} \mid x_{2}, y_{2}\right\}}{P\left\{x_{1} \mid x_{2}\right\}}\right) .
\end{align*}
$$

This would actually lead to a converse of theorem 1 if we had independence of the random variables x_{1} and x_{2}. This last expression would then reduce to $E\left[\log \left(P\left\{x_{1} \mid x_{2}, y_{2}\right\} / P\left\{x_{1}\right\}\right)\right]$. Unfortunately in a general code they are not necessarily independent. In fact, the next x_{1} and x_{2} may be functionally related to received X and Y and hence dependent.

We may, however, at least obtain an outer bound on the capacity surface. Namely, the above inequality together with the similar inequality for the second terminal imply that the vector change in equivocation due to receiving another letter must be a vector with components bounded by

$$
\begin{equation*}
E\left(\log \frac{P\left\{x_{1} \mid x_{2}, y_{2}\right\}}{P\left\{x_{1} \mid x_{2}\right\}}\right), E\left(\log \frac{P\left\{x_{2} \mid x_{1}, y_{1}\right\}}{P\left\{x_{2} \mid x_{1}\right\}}\right) \tag{35}
\end{equation*}
$$

for some $P\left\{x_{1}, x_{2}\right\}$. Thus the vector change is included in the convex hull of all such vectors G_{O} (when $P\left\{x_{1}, x_{2}\right\}$ is varied).

In a code of length n, the total change in equivocation from beginning to end of the block cannot exceed the sum of n vectors from this convex hull. Thus this sum will lie in the convex hull $n G_{o}$, that is, G_{o} expanded by a factor n.

Suppose now our given code has signalling rates $R_{1}=(1 / n) \log M_{1}$ and $R_{2}=$ $(1 / n) \log M_{2}$. Then the initial equivocations of message are $n R_{1}$ and $n R_{2}$. Suppose the point ($n R_{1}, n R_{2}$) is outside the convex hull $n G_{o}$ with nearest distance $n \epsilon_{1}$, figure 8. Construct a line L passing through the nearest point of $n G_{o}$ and

Figure 8
perpendicular to the nearest approach segment with $n G_{o}$ on one side (using the fact that $n G_{o}$ is a convex region). It is clear that for any point ($n R_{1}^{*}, n R_{2}^{*}$) on the $n G_{o}$ side of L and particularly for any point of $n G_{o}$, that we have $\left|n R_{1}-n R_{1}^{*}\right|+$ $\left|n R_{2}-n R_{2}^{*}\right| \geqq n \epsilon$ (since the shortest distance is $n \epsilon$) and furthermore at least
one of the $n R_{1}-n R_{1}^{*}$ and $n R_{2}-n R_{2}^{*}$ is at least $n \epsilon / \sqrt{2}$. (In a right triangle at least one leg is as great as the hypotenuse divided by $\sqrt{2}$.)

Thus after n uses of the channel, if the signalling rate pair R_{1}, R_{2} is distance ϵ outside the convex hull G_{o}, at least one of the two final equivocations is at least $\epsilon / \sqrt{2}$, where all equivocations are on a per second basis. Thus for signalling rates ϵ outside of G_{o} the equivocations per second are bounded from below independent of the code length n. This implies that the error probability is also bounded from below, that is, at least one of the two codes will have error probability $\geqq f(\epsilon)>0$ independent of n, as shown in [2], appendix.

To summarize, the capacity region G is included in the convex hull G_{o} of all points R_{12}, R_{21}

$$
\begin{align*}
& R_{12}=E\left[\log \frac{P\left\{x_{1} \mid x_{2}, y_{2 i}\right\}}{P\left\{x_{1} \mid x_{2}\right\}}\right] \tag{36}\\
& R_{21}=E\left[\log \frac{P\left\{x_{2} \mid x_{1}, y_{1}\right\}}{P\left\{x_{2} \mid x_{1}\right\}}\right]
\end{align*}
$$

when arbitrary joint probability assignments $P\left\{x_{1}, x_{2}\right\}$ are made.
Thus the inner bound G_{I} and the outer bound G_{o} are both found by the same process, assigning input probabilities, calculating the resulting average mutual informations R_{12} and R_{21} and then taking the convex hull. The only difference is that for the outer bound a general joint assignment $P\left\{x_{1}, x_{2}\right\}$ is made, while for the inner bound the assignments are restricted to independent $P\left\{x_{1}\right\} P\left\{x_{2}\right\}$.

We now develop some properties of the outer bound.

10. The concavity of R_{12} and R_{21} as functions of $P\left(x_{1}, x_{2}\right)$

Theorem 4. Given the transition probabilities $P\left\{y_{1}, y_{2} \mid x_{1}, x_{2}\right\}$ for a channel K, the rates

$$
\begin{align*}
& R_{12}=E\left[\log \frac{P\left\{y_{2} \mid x_{1}, x_{2}\right\}}{P\left\{y_{2} \mid x_{2}\right\}}\right] \tag{37}\\
& R_{21}=E\left[\log \frac{P\left\{y_{1} \mid x_{1}, x_{2}\right\}}{P\left\{y_{1} \mid x_{1}\right\}}\right]
\end{align*}
$$

are concave downward functions of the assigned input probabilities $P\left\{x_{1}, x_{2}\right\}$. For example, $R_{12}\left(P_{1}\left\{x_{1}, x_{2}\right\} / 2+P_{2}\left\{x_{1}, x_{2}\right\} / 2\right) \geqq R_{12}\left(P_{1}\left\{x_{1}, x_{2}\right\}\right) / 2+R_{12}\left(P_{2}\left\{x_{1}, x_{2}\right\}\right) / 2$.

This concave property is a generalization of that given in [3] for a one-way channel. To prove the theorem it suffices, by known results in convex functions, to show that

$$
\begin{equation*}
R_{12}\left(\frac{1}{2} P_{1}\left\{x_{1}, x_{2}\right\}+\frac{1}{2} P_{2}\left\{x_{1}, x_{2}\right\}\right) \geqq \frac{1}{2} R_{12}\left(P_{1}\left\{x_{1}, x_{2}\right\}\right)+\frac{1}{2} R_{12}\left(P_{2}\left\{x_{1}, x_{2}\right\}\right) \tag{38}
\end{equation*}
$$

But $R_{12}\left(P_{1}\left\{x_{1}, x_{2}\right\}\right)$ and $R_{12}\left(P_{2}\left\{x_{1}, x_{2}\right\}\right)$ may be written

$$
\begin{align*}
& R_{12}\left(P_{1}\left\{x_{1}, x_{2}\right\}\right)=\sum_{x_{2}} P_{1}\left\{x_{2}\right\} \sum_{x_{1}, y_{2}} P_{1}\left\{x_{1}, y_{2} \mid x_{2}\right\} \log \frac{P_{2}\left\{y_{2} \mid x_{1}, x_{2}\right\}}{P_{1}\left\{y_{2} \mid x_{2}\right\}} \tag{39}\\
& R_{12}\left(P_{2}\left\{x_{1}, x_{2}\right\}\right)=\sum_{x_{2}} P_{2}\left\{x_{2}\right\} \sum_{x_{1}, y_{2}} P_{2}\left\{x_{1}, y_{2} \mid x_{2}\right\} \log \frac{P_{2}\left\{y_{2} \mid x_{1}, x_{2}\right\}}{P_{2}\left\{y_{2} \mid x_{2}\right\}} \tag{40}
\end{align*}
$$

Here the subscripts 1 on probabilities correspond to those produced with the probability assignment $P_{1}\left\{x_{1}, x_{2}\right\}$ to the inputs, and similarly for the subscript 2. The inner sum $\sum_{x_{1}, y_{2}} P_{1}\left\{x_{1}, y_{2} \mid x_{2}\right\} \log \left(P_{1}\left\{y_{2} \mid x_{1}, x_{2}\right\} / P_{1}\left\{y_{2} \mid x_{2}\right\}\right)$ may be recognized as the rate for the channel from x_{1} to y_{2} conditional on x_{2} having a particular value and with the x_{1} assigned probabilities corresponding to its conditional probability according to $P_{1}\left\{x_{1}, x_{2}\right\}$.

The corresponding inner sum with assigned probabilities $P_{2}\left\{x_{1}, x_{2}\right\}$ is $\sum_{x_{1}, y_{2}} P_{2}\left\{x_{1}, y_{2} \mid x_{2}\right\} \log \left(P_{2}\left\{y_{2} \mid x_{1}, x_{2}\right\} / P_{2}\left\{y_{2} \mid x_{2}\right\}\right)$, which may be viewed as the rate conditional on x_{2} for the same one-way channel but with the assignment $P_{2}\left\{x_{1} \mid x_{2}\right\}$ for the input letters.

Viewed this way, we may apply the concavity result of [2]. In particular, the weighted average of these rates with weight assignments $P_{1}\left\{x_{2}\right\} /\left(P_{1}\left\{x_{2}\right\}+\right.$ $\left.P_{2}\left\{x_{2}\right\}\right)$ and $P_{2}\left\{x_{2}\right\} /\left(P_{1}\left\{x_{2}\right\}+P_{2}\left\{x_{2}\right\}\right)$ is dominated by the rate for this oneway channel when the probability assignments are the weighted average of the two given assignments. This weighted average of the given assignment is

$$
\begin{align*}
P_{3}\left\{x_{1}, x_{2}\right\} & =\frac{P_{1}\left\{x_{2}\right\}}{P_{1}\left\{x_{2}\right\}+P_{2}\left\{x_{2}\right\}} P_{1}\left\{x_{1} \mid x_{2}\right\}+\frac{P_{2}\left\{x_{2}\right\}}{P_{1}\left\{x_{2}\right\}+P_{2}\left\{x_{2}\right\}} P_{2}\left\{x_{1} \mid x_{2}\right\} \tag{41}\\
& =\frac{1}{2} \frac{1}{\left(P_{1}\left\{x_{2}\right\}+P_{2}\left\{x_{2}\right\}\right)} 2\left(P_{1}\left\{x_{1}, x_{2}\right\}+P_{2}\left\{x_{1}, x_{2}\right\}\right)
\end{align*}
$$

Thus the sum of two corresponding terms (the same x_{2}) from (38) above is dominated by $P_{1}\left\{x_{2}\right\}+P_{2}\left\{x_{2}\right\}$ multiplied by the rate for this one-way channel with these averaged probabilities. This latter rate, on substituting the averaged probabilities, is seen to be

$$
\begin{equation*}
\sum_{x_{1}, y_{2}} P_{3}\left\{x_{1}, y_{2} \mid x_{2}\right\} \log \frac{P_{3}\left\{y_{2} \mid x_{1}, x_{2}\right\}}{P_{3}\left\{y_{2} \mid x_{2}\right\}} \tag{42}
\end{equation*}
$$

where the subscript 3 corresponds to probabilities produced by using $P_{3}\left\{x_{1}, x_{2}\right\}=$ ($P_{1}\left\{x_{1}, x_{2}\right\}+P_{2}\left\{x_{1}, x_{2}\right\} / 2$)/2. In other words, the sum of (39) and (40) (including the first summation on x_{2}) is dominated by

$$
\begin{align*}
& \sum_{x_{2}}\left(P_{1}\left\{x_{2}\right\}+P_{2}\left\{x_{2}\right\}\right) \sum_{x_{1}, y 2} P_{3}\left\{x_{1}, y_{2} \mid x_{2}\right\} \log \frac{P_{3}\left\{y_{2} \mid x_{1}, x_{2}\right\}}{P_{3}\left\{y_{2} \mid x_{2}\right\}} \tag{43}\\
&=2 \sum_{x_{1}, x_{2}, y 2} P_{3}\left\{x_{1}, y_{2}, x_{2}\right\} \log \frac{P_{3}\left\{y_{2} \mid x_{1}, x_{2}\right\}}{P_{3}\left\{y_{2} \mid x_{2}\right\}}
\end{align*}
$$

This is the desired result for the theorem.

11. Applications of the concavity property; channels with symmetric structure

Theorem 4 is useful in a number of ways in evaluating the outer bound for particular channels. In the first place, we note that $R_{12}+\lambda R_{21}$ as a function of $P\left\{x_{1}, x_{2}\right\}$ and for positive λ is also a concave downward function. Consequently any local maximum is the absolute maximum and numerical investigation in locating such maxima by the Lagrange multiplier method is thereby simplified.

In addition, this concavity result is very powerful in helping locate the maxima when "symmetries" exist in a channel. Suppose, for example, that in a given channel the transition probability array $P\left\{y_{1}, y_{2} \mid x_{1}, x_{2}\right\}$ has the following property. There exists a relabelling of the input letters x_{1} and of the output letters y_{1} and y_{2} which interchanges, say, the first two letters of the x_{1} alphabet but leaves the set of probabilities $P\left\{y_{1}, y_{2} \mid x_{1}, x_{2}\right\}$ the same. Now if some particular assignment $P\left\{x_{1}, x_{2}\right\}$ gives outer bound rates R_{12} and R_{21}, then if we apply the same permutation to the x alphabet in $P\left\{x_{1}, x_{2}\right\}$ we obtain a new probability assignment which, however, will give exactly the same outer bound rates R_{12} and R_{21}. By our concavity property, if we average these two probability assignments we obtain a new probability assignment which will give at least as large values of R_{12} and R_{21}. In this averaged assignment for any particular x_{2} the first two letters in the x_{1} alphabet are assigned equal probability. In other words, in such a case an assignment for maximizing $R_{12}+\lambda R_{21}$, say $P\left\{x_{1}, x_{2}\right\}$ viewed as a matrix, will have its first two rows identical.
If the channel had sufficiently symmetric structure that any pair of x_{1} letters might be interchanged by relabelling the x_{1} alphabet and the y_{1} and y_{2} alphabets while preserving $P\left\{y_{1}, y_{2} \mid x_{1}, x_{2}\right\}$, then a maximizing assignment $P\left\{x_{1}, x_{2}\right\}$ would exist in which all rows are identical. In this case the entries are functions of x_{2} only: $P\left\{x_{1}, x_{2}\right\}=P\left\{x_{2}\right\} / \alpha$ where α is the number of letters in the x_{1} alphabet. Thus the maximum for a dependent assignment of $P\left\{x_{1}, x_{2}\right\}$ is actually obtained with x_{1} and x_{2} independent. In other words, in this case of a full set of symmetric interchanges on the x_{1} alphabet, the inner and outer bounds are identical. This gives an important class of channels for which the capacity region can be determined with comparative ease.

An example of this type is the channel with transition probabilities as follows. All inputs and outputs are binary, $y_{1}=x_{2}$ (that is, there is a noiseless binary channel from terminal 2 to terminal 1). If $x_{2}=0$, then $y_{2}=x_{1}$, while if $x_{2}=1$, y_{2} has probability .5 of being 0 and .5 of being 1 . In other words, if x_{2} is 0 the binary channel in the forward direction is noiseless, while if x_{2} is 1 it is completely noisy. We note here that if the labels on the x_{1} alphabet are interchanged while we simultaneously interchange the y_{2} labels, the channel remains unaltered, all conditional probabilities being unaffected. Following the analysis above, then, the inner and outer bounds will be the same and give the capacity region. Furthermore, the surface will be attained with equal rows in the $P\left\{x_{1}, x_{2}\right\}$ matrix as shown in table II.

TABLE II

		x_{2}	
		0	1
	0	$p / 2$	$q / 2$
x_{1}			
	1	$p / 2$	$q / 2$

For a particular p this assignment gives the rates

$$
\begin{equation*}
R_{12}=p, \quad R_{21}=-(p \log p+q \log q) \tag{44}
\end{equation*}
$$

These come from substituting in the formulas or by noting that in the $1-2$ direction the channel is acting like an erasure channel, while in the $2-1$ direction it is operating like a binary noiseless channel with unequal probabilities assigned to the letters. This gives the capacity region of figure 9.

Figure 9
There are many variants and applications of these interchange and symmetry tricks for aid in the evaluation of capacity surfaces. For example, if both the x_{1} and x_{2} alphabets have a full set of interchanges leaving the transition probabilities the same, then the maximizing distribution must be identical both in rows and columns and hence all entries are the same, $P\left\{x_{1}, x_{2}\right\}=1 / \alpha c$ where α and c are the number of letters in the x_{1} and x_{2} alphabets. In this case, then, all attainable $R_{12} R_{21}$ points are dominated by the particular point obtained from this uniform probability assignment. In other words, the capacity region is a rectangle in the case of a full set of symmetric interchanges for both x_{1} and x_{2}.

An example of this type is the channel of figure 2 defined by $y_{1}=y_{2}=x_{1} \oplus x_{2}$ where \oplus means mod 2 addition.

12. Nature of the region attainable in the outer bound

We now will use the concavity property to establish some results concerning the set Γ of points (R_{12}, R_{21}) that can be obtained by all possible assignments of
probabilities $P\left\{x_{1}, x_{2}\right\}$ in a given channel K, and whose convex hull is G_{o}. We will show that the set Γ is in fact already convex and therefore identical with G_{o} and that it consists of all points in or on the boundary of a region of the type shown in figure 10 bounded by a horizontal segment L_{1}, an outward convex seg-

Figure 10
ment L_{2}, a vertical segment L_{3} and two segments of the coordinate axes. Thus G_{o} has a structure similar to G_{I}.

Suppose some $P\left\{x_{1}, x_{2}\right\}$ gives a point $\left(R_{12}, R_{21}\right)$. Here R_{12} is, as we have observed previously, an average of the different R_{12} which would be obtained by fixing x_{2} at different values, that is, using these with probability 1 and applying the conditional probabilities $P\left\{x_{1} \mid x_{2}\right\}$ to the x_{1} letters. The weighting is according to factors $P\left\{x_{2}\right\}$. It follows that some particular x_{2} will do as well at least as this weighted average. If this particular x_{2} is x_{2}^{*}, the set of probabilities $P\left\{x_{1} \mid x_{2}^{*}\right\}$ gives at least as large a value of R_{12} and simultaneously makes $R_{21}=0$. In

Figure 11
figure 11 this means we can find a point in Γ below or to the right of the projection of the given point as indicated (point Q).

Now consider mixtures of these two probability assignments, that is, assignments of the form $\lambda P\left\{x_{1} x_{2}\right\}+(1-\lambda) P\left\{x_{1} \mid x_{2}^{*}\right\}$. Here λ is to vary continuously from 0 to 1 . Since R_{12} and R_{21} are continuous functions of the assigned probability, this produces a continuous curve C running from the given point to the point Q. Furthermore, this curve lies entirely to the upper right of the connecting line segment. This is because of the concavity property for the R_{12} and R_{21} expressions. In a similar way, we construct a curve C^{\prime}, as indicated, of points be-
longing to Γ and lying on or above the horizontal straight line through the given point.

Now take all points on the curves C and C^{\prime} and consider mixing the corresponding probability assignments with the assignment $P\left\{x_{1}^{*}, x_{2}^{*}\right\}=1$ (all other pairs given zero probability). This last assignment gives the point (0,0). The fraction of this $(0,0)$ assignment is gradually increased for 0 up to 1 . As this is done the curve of resulting points changes continuously starting at the $C C^{\prime}$ curve and collapsing into the point $(0,0)$. The end points stay on the axes during this operation. Consequently by known topological results the curve sweeps through the entire area bounded by C, C^{\prime} and the axes and in particular covers the rectangle subtended by the original point $\left(R_{12}, R_{21}\right)$.

Figure 12
We will show that the set of points Γ is a convex set. Suppose Q_{1} and Q_{2}, figure 12, are two points which can be obtained by assignments $P_{1}\left\{x_{1}, x_{2}\right\}$ and $P_{2}\left\{x_{1}, x_{2}\right\}$.

By taking mixtures of varying proportions one obtains a continuous curve C connecting them, lying, by the concavity property, to the upper right of the connecting line segment. Since these are points of Γ all of their subtended rectangles are, as just shown, points of Γ. It follows that all points of the connecting line segment are points of Γ. Note that if Q_{1} and Q_{2} are in the first and third quadrants relative to each other the result is trivially true, since then the connecting line segment lies in the rectangle of one of the points.

These results are sufficient to imply the statements at the beginning of this section, namely the set Γ is convex, identical with G_{o}, and if we take the largest attainable R_{12} and for this R_{12} the largest R_{21}, then points in the subtended rectangle are attainable. Similarly for the largest R_{21}.
It may be recalled here that the set of points attainable by independent assignments, $P\left\{x_{1}, x_{2}\right\}=P\left\{x_{1}\right\} P\left\{x_{2}\right\}$, is not necessarily a convex set. This is shown by the example of table I.
It follows also from the results of this section that the end points of the outer bound curve (where it reaches the coordinate axes) are the same as the end points of the inner bound curve. This is because, as we have seen, the largest R_{12} can be achieved using only one particular x_{2} with probability 1 . When this is done, $P\left\{x_{1}, x_{2}\right\}$ reduces to a product of independent probabilities.

13. An example where the inner and outer bounds differ

The inner and outer bounds on the capacity surface that we have derived above are not always the same. This was shown by David Blackwell for the binary multiplying channel defined by $y_{1}=y_{2}=x_{1} x_{2}$. The inner and outer bounds for this channel have been computed numerically and are plotted in figure 13. It may be seen that they differ considerably, particularly in the middle

Figure 13
of the range. The calculation of the inner bound, in this case, amounts to finding the envelope of points

$$
\begin{align*}
& R_{12}=-p_{2}\left[p_{1} \log p_{1}+\left(1-p_{1}\right) \log \left(1-p_{1}\right)\right] \\
& R_{21}=-p_{1}\left[p_{2} \log p_{2}+\left(1-p_{2}\right) \log \left(1-p_{2}\right)\right] . \tag{45}
\end{align*}
$$

These are the rates with independent probability assignments at the two ends:
probability p_{1} for using letter 1 at terminal 1 and probability p_{2} for using letter 1 at terminal 2. By evaluating these rates for different p_{1} and p_{2} the envelope shown in the figure was obtained.

For the outer bounds, the envelope of rates for a general dependent assignment of probabilities is required. However it is easily seen that any assignment in which $P\{0,0\}$ is positive can be improved by transferring this probability to one of the other possible pairs. Hence we again have a two parameter family of points (since the sum of the three other probabilities must be unity). If the probabilities are denoted by $p_{1}=P\{1,0\}, p_{2}=P\{0,1\}, 1-p_{1}-p_{2}=P\{1,1\}$, we find the rates are

$$
\begin{align*}
& R_{12}=-\left(1-p_{1}\right)\left[\frac{p_{2}}{1-p_{1}} \log \frac{p_{2}}{1-p_{1}}+\left(1-\frac{p_{2}}{1-p_{1}}\right) \log \left(1-\frac{p_{2}}{1-p_{1}}\right)\right] \tag{46}\\
& R_{21}=-\left(1-p_{2}\right)\left[\frac{p_{1}}{1-p_{2}} \log \frac{p_{1}}{1-p_{2}}+\left(1-\frac{p_{1}}{1-p_{2}}\right) \log \left(1-\frac{p_{1}}{1-p_{2}}\right)\right]
\end{align*}
$$

Here again a numerical evaluation for various values of p_{1} and p_{2} led to the envelope shown in the figure.

In connection with this channel, D. W. Hagelbarger has devised an interesting and simple code (not a block code however) which is error free and transmits at average rates $R_{12}=R_{21}=.571$, slightly less than our lower bound. His code operates as follows. A 0 or 1 is sent from each end with independent probabilities $1 / 2,1 / 2$. If a 0 is received then the next digit transmitted is the complement of what was just sent. This procedure is followed at both ends. If a 1 is received, both ends progress to the next binary digit of the message. It may be seen that three-fourths of the time on the average the complement procedure is followed and one-fourth of the time a new digit is sent. Thus the average number of channel uses per message digit is $(3 / 4)(2)+(1 / 4)(1)=7 / 4$. The average rate is $4 / 7=.571$ in both directions. Furthermore it is readily seen that the message digits can be calculated without error for each communication direction.

By using message sources at each end with biased probabilities it is possible to improve the Hagelbarger scheme slightly. Thus, if 1's occur as message digits with probability .63 and 0 's with probability .37 , we obtain rates in both directions

$$
\begin{equation*}
R_{12}=R_{21}=\frac{-.63 \log .63-.37 \log .37}{1-(.63)^{2}}=.593 \tag{47}
\end{equation*}
$$

We will, in a later section, develop a result which in principle gives for any channel the exact capacity region. However, the result involves a limiting process over words of increasing length and consequently is difficult to evaluate in most cases. In contrast, the upper and lower bounds involve only maximizing operations relating to a single transmitted letter in each direction. Although sometimes involving considerable calculation, it is possible to actually evaluate them when the channel is not too complex.

14. Attainment of the outer bound with dependent sources

With regard to the outer bound there is an interesting interpretation relating to a somewhat more general communication system. Suppose that the message sources at the two ends of our channel are not independent but statistically dependent. Thus, one might be sending weather information from Boston to New York and from New York to Boston. The weather at these cities is of course not statistically independent. If the dependence were of just the' right type for the channel or if the messages could be transformed so that this were the case, then it may be possible to attain transmission at the rates given by the outer bound. For example, in the multiplying channel just discussed, suppose that the messages at the two ends consist of streams of binary digits which occur with the dependent probabilities given by table III. Successive x_{1}, x_{2} pairs

TABLE III

		x_{2}	
x_{1}	0		1
	1	0	.275
		.275	.45

are assumed independent. Then by merely sending these streams into the channel (without processing) the outer bound curve is achieved at its midpoint.

It is not known whether this is possible in general. Does there always exist a suitable pair of dependent sources that can be coded to give rates R_{1}, R_{2} within ϵ of any point in the outer bound? This is at least often possible in the noiseless, memoryless case, that is, when y_{1} and y_{2} are strict functions of x_{1} and x_{2} (no channel noise). The source pair defined by the assignment $P\left\{x_{1}, x_{2}\right\}$ that produces the point in question is often suitable in such a case without coding as in the above example.

The inner bound also has an interesting interpretation. If we artificially limit the codes to those where the transmitted sequence at each terminal depends only on the message and not on the received sequence at that terminal, then the inner bound is indeed the capacity region. This results since in this case we have at each stage of the transmission (that is, given the index of the letter being transmitted) independence between the two next transmitted letters. It follows that the total vector change in equivocation is bounded by the sum of n vectors, each corresponding to an independent probability assignment. Details of this proof are left to the reader. The independence required would also occur if the transmission and reception points at each end were at different places with no direct cross communication.

15. General solution for the capacity region in the two-way channel

For a given memoryless two-way channel K we define a series of derived channels K_{1}, K_{2}, \cdots. These will also be memoryless channels and the capacity region for K will be evaluated as a limit in terms of the inner bounds for the series K_{n}.

The channel K_{1} is identical with K. The derived channel K_{2} is one whose input letters are actually strategies for working with K for a block of two input letters. Thus the input letters at terminal 1 for K_{2} consist of pairs [$x_{1}^{1}, f\left(x_{1}^{1}, y_{1}^{1}\right)$]. Here x_{1}^{1} is the first transmitted letter of the pair and ranges therefore over the a possible input letters of K. Now $f\left(x_{1}^{1}, y_{1}^{1}\right)$ represents any function from the first input letter x_{1}^{1} and output letter y_{1}^{1} to the second input letter x_{1}^{2}. Thus this function may be thought of as a rule for choosing a second input letter at terminal 1 depending on the first input letter and the observed first output letter. If x_{1}^{1} can assume a values and y_{1}^{1} can assume b values, then the (x_{1}^{1}, y_{1}^{1}) pair can assume $a b$ values, and since the function f takes values from a possibilities there are $a^{a b}$ possible functions. Hence there are $a \cdot a^{a b}$ possible pairs $\left[x_{1}^{1}, f\left(x_{1}^{1}, y_{1}^{1}\right)\right]$, or possible input letters to K_{2} at terminal 1.

In a similar way, at terminal 2 consider pairs $\left[x_{2}^{1}, g\left(x_{2}^{1}, y_{2}^{1}\right)\right]$. Here g ranges over functions from the first received and transmitted letters at terminal 2 and takes values from the x_{2} alphabet. Thus these pairs have $c \cdot c^{c d}$ values, where c and d are the sizes of the input and output alphabets at terminal 2.

The pairs $\left[x_{1}^{1}, f\left(x_{1}^{1}, y_{1}^{1}\right)\right]$ and $\left[x_{2}^{1}, g\left(x_{2}^{1}, y_{2}^{1}\right)\right]$ may be thought of as strategies for using the channel K in two letter sequences, the second letter to be dependent on the first letter sent and the first letter received. The technique here is very similar to that occurring in the theory of games. There one replaces a sequence of moves by a player (whose available information for making a choice is increasing through the series) by a single move in which he chooses a strategy. The strategy describes what the player will do at each stage in each possible contingency. Thus a game with many moves is reduced to a game with a single move chosen from a larger set.

The output letters for K_{2} are, at terminal 1, pairs (y_{1}^{1}, y_{1}^{2}) and, at terminal 2, pairs $\left(y_{2}^{1}, y_{2}^{2}\right)$; that is, the pairs of received letters at the two terminals. The transition probabilities for K_{2} are the probabilities, if these strategies for introducing a particular pair of letters were used in K, that the output pairs would occur. Thus

$$
\begin{align*}
P_{K 2}\left\{\left(y_{1}^{1}, y_{1}^{2}\right),\left(y_{2}^{1}, y_{2}^{2}\right) \mid\left[x_{1}^{1},\right.\right. & \left.\left.f\left(x_{1}^{1}, y_{1}^{1}\right)\right],\left[x_{2}^{1}, g\left(x_{2}^{1}, y_{2}^{1}\right)\right]\right\} \tag{48}\\
& =P_{K}\left\{y_{1}^{1}, y_{2}^{1} \mid x_{1}^{1}, x_{2}^{1}\right\} P_{K}\left\{y_{1}^{2}, y_{2}^{2} \mid f\left(x_{1}^{1}, y_{1}^{1}\right), g\left(x_{2}^{1}, y_{2}^{1}\right)\right\}
\end{align*}
$$

In a similar way the channels K_{3}, K_{4}, \cdots are defined. Thus K_{n} may be thought of as a channel corresponding to n uses of K with successive input letters at a terminal functions of previous input and output letters at that terminal. Therefore the input letters at terminal 1 are n-tuples

$$
\begin{equation*}
\left[x_{1}^{1}, f\left(x_{1}^{1}, y_{1}^{1}\right), \cdots, f_{n-1}\left(x_{1}^{1}, x_{1}^{2}, \cdots, x_{1}^{n-1}, y_{1}^{1}, y_{1}^{2}, \cdots, y_{1}^{n-1}\right)\right] \tag{49}
\end{equation*}
$$

a possible alphabet of

$$
\begin{equation*}
a a^{a b} a^{(a b)^{2}} \cdots a^{(a b)^{n-1}}=a^{\left[(a b)^{n}-1\right] /(a b-1)} \tag{50}
\end{equation*}
$$

possibilities. The output letters at terminal 1 consist of n-tuples

$$
\begin{equation*}
\left(y_{1}^{1}, y_{1}^{2}, \cdots, y_{1}^{n}\right) \tag{51}
\end{equation*}
$$

and range therefore over an alphabet of b^{n} generalized letters. The transition probabilities are defined for K_{n} in terms of those for K by the generalization of equation (39)

$$
\begin{align*}
P_{K_{n}}\left\{y_{1}^{1}, y_{1}^{2}, \cdots, y_{1}^{n} \mid\left(x_{1}^{1}, f_{1}, f_{2}, \cdots, f_{n-1}\right),\left(x_{2}^{1}, g_{1}, g_{2}\right.\right. & \left.\left., \cdots, g_{n-1}\right)\right\} \tag{52}\\
& =\prod_{i=1}^{n} P_{K}\left\{y_{1}^{1} \mid f_{i-1}, g_{i-1}\right\} .
\end{align*}
$$

The channel K_{n} may be thought of, then, as a memoryless channel whose properties are identical with using channel K in blocks of n, allowing transmitted and received letters within a block to influence succeeding choices.

For each of the channels K_{n} one could, in principle, calculate the lower bound on its capacity region. The lower bound for K_{n} is to be multiplied by a factor $1 / n$ to compare with K, since K_{n} corresponds to n uses of K.

Theorem 5. Let B_{n} be the lower bound of the capacity region for the derived channel K_{n} reduced in scale by a factor $1 / n$. Then as $n \rightarrow \infty$ the regions B_{n} approach a limit B which includes all the particular regions and is the capacity region of K.

Proof. We first show the positive assertion that if (R_{12}, R_{21}) is any point in some B_{n} and ϵ is any positive number, then we can construct block codes with error probabilities $P_{e}<\epsilon$ and rates in the two directions at least $R_{12}-\epsilon$ and $R_{21}-\epsilon$. This follows readily from previous results if the derived channel K_{n} and its associated inner bound B_{n} are properly understood. K_{n} is a memoryless channel, and by theorem 3 we can find codes for it transmitting arbitrarily close to the rates R_{12}, R_{21} in B_{n} with arbitrarily small error probability. These codes are sequences of letters from the K_{n} alphabet. They correspond, then, to sequences of strategies for blocks of n for the original channel K.

Thus these codes can be directly translated into codes for $K n$ times as long, preserving all statistical properties, in particular the error probability. These codes, then, can be interpreted as codes signalling at rates $1 / n$ as large for the K channel with the same error probability. In fact, from theorem 3, it follows that for any pair of rates strictly inside B_{n} we can find codes whose error probability decreases at least exponentially with the code length.

We will now show that the regions B_{n} approach a limit B as n increases and that B includes all the individual B_{n}. By a limiting region we mean a set of points B such that for any point P of B, and $\epsilon>0$, there exists n_{0} such that for $n>n_{0}$ there are points of B_{n} within ϵ of P, while for any P not in B there exist ϵ and n_{0} such that for $n>n_{0}$ no points of B_{n} are within ϵ of P. In the first
place B_{n} is included in $B_{k n}$ for any integer k. This is because the strategies for $B_{k n}$ include as special cases strategies where the functional influence only involves subblocks of n. Hence all points obtainable by independent probability assignments with K_{n} are also obtainable with $K_{k n}$ and the convex hull of the latter set must include the convex hull of the former set.

It follows that the set $B_{k n}$ approaches a limit B, the union of all the $B_{k n}$ plus limit points of this set. Also B includes $B_{n_{1}}$ for any n_{1}. For n and n_{1} have a common multiple, for example $n n_{1}$, and B includes $B_{n n_{1}}$ while $B_{n n_{1}}$ includes $B_{n 1}$.

Furthermore, any point obtainable with $K_{k n}$ can be obtained with $K_{k n+\alpha}$, for $0 \leqq \alpha \leqq n$, reduced in both coordinates by a factor of not more than $k /(k+1)$. This is because we may use the strategies for $K_{k n}$ followed by a series of α of the first letters in the x_{1} and x_{2} alphabets. (That is, fill out the assignments to the length $k n+\alpha$ with essentially dummy transmitted letters.) The only difference then will be in the normalizing factor, $1 /$ (block length). By making k sufficiently large, this discrepancy from a factor of 1 , namely $1 /(k+1)$, can be made as small as desired. Thus for any $\epsilon>0$ and any point P of B there is a point of $B_{n_{1}}$ within ϵ of P for all sufficiently large n_{1}.

With regard to the converse part of the theorem, suppose we have a block code of length n with signalling rates (R_{1}, R_{2}) corresponding to a point outside B, closest distance to B equal to ϵ. Then since B includes B_{n}, the closest distance to B_{n} is at least ϵ. We may think of this code as a block code of length 1 for the channel K_{n}. As such, the messages m_{1} and m_{2} are mapped directly into "input letters" of K_{n} without functional dependence on the received letters. We have then since m_{1} and m_{2} are independent the independence of probabilities associated with these input letters sufficient to make the inner bound and outer bound the same. Hence the code in question has error probability bounded away from zero by a quantity dependent on ϵ but not on n.

16. Two-way channels with memory

The general discrete two-way channel with memory is defined by a set of conditional probabilities

$$
\begin{align*}
& P\left\{y_{1 n}, y_{2 n} \mid x_{11}, x_{12}, \cdots, x_{1 n} ; x_{21}, x_{22}, \cdots, x_{2 n}\right. ; \tag{53}\\
&\left.y_{11}, y_{12}, \cdots, y_{1 n-1} ; y_{21}, y_{22}, \cdots, y_{2 n-1}\right\}
\end{align*}
$$

This is the probability of the nth output pair $y_{1 n}, y_{2 n}$ conditional on the preceding history from time $t=0$, that is, the input and output sequences from the starting time in using the channel. In such a general case, the probabilities might change in completely arbitrary fashion as n increases. Without further limitation, it is too general to be either useful or interesting. What is needed is some condition of reasonable generality which, however, ensures a certain stability in behavior and allows, thereby, significant coding theorems. For example, one might require finite historical influence so that probabilities of letters depend only on a bounded past history. (Knowing the past d inputs and outputs, earlier
inputs and outputs do not influence the conditional probabilities.) We shall, however, use a condition which is, by and large, more general and also more realistic for actual applications.

We will say that a two-way channel has the recoverable state property if it satisfies the following condition. There exists an integer d such that for any input and output sequences of length $n, X_{1 n}, X_{2 n}, Y_{1 n}, Y_{2 n}$, there exist two functions $f\left(X_{1 n}, Y_{1 n}\right), g\left(X_{2 n}, Y_{2 n}\right)$ whose values are sequences of input letters of the same length less than d and such that if these sequences f and g are now sent over the channel it is returned to its original state. Thus, conditional probabilities after this are the same as if the channel were started again at time zero.

The recoverable state property is common in actual physical communication systems where there is often a "zero" input which, if applied for a sufficient period, allows historical influences to die out. Note also that the recoverable state property may hold even in channels with an infinite set of internal states, provided it is possible to return to a "ground" state in a bounded number of steps.

The point of the recoverable state condition is that if we have a block code for such a channel, we may annex to the input words of this code the functions f and g at the two terminals and then repeat the use of the code. Thus, if such a code is of length n and has, for one use of the code, signalling rates R_{1} and R_{2} and error probabilities $P_{e 1}$ and $P_{e 2}$, we may continuously signal at rates $R_{1}^{\prime} \geqq$ $n R_{1} /(n+d)$ and $R_{2}^{\prime} \geqq n R_{2} /(n+d)$ with error probabilities $P_{e 1}^{\prime} \leqq P_{e 1}$ and $P_{t 2}^{\prime} \leqq P_{e 2}$.

For a recoverable state channel we may consider strategies for the first n letters just as we did in the memoryless case, and find the corresponding inner bound B_{n} on the capacity region (with scale reduced by $1 / n$). We define the region B which might be called the limit supremum of the regions B_{n}. Namely, B consists of all points which belong to an infinite number of B_{n} together with limit points of this set.

Theorem 6. Let $\left(R_{1}, R_{2}\right)$ be any point in the region B. Let n_{0} be any integer and let ϵ_{1} and ϵ_{2} be any positive numbers. Then there exists a block code of length $n>n_{0}$ with signalling rates $R_{1}^{\prime}, R_{2}^{\prime}$ satisfying $\left|R_{1}-R_{1}^{\prime}\right|<\epsilon_{1},\left|R_{2}-R_{2}^{\prime}\right|<\epsilon_{1}$ and error probabilities satisfying $P_{e 1}<\epsilon_{2}, P_{e 2}<\epsilon_{2}$. Conversely, if $\left(R_{1}, R_{2}\right)$ is not in B then there exist n_{0} and $\delta>0$ such that any block code of length exceeding n_{0} has either $P_{\epsilon 1}>\delta$ or $P_{e 2}>\delta$ (or both).

Proof. To show the first part of the theorem choose an $n_{1}>n_{0}$ and also large enough to make both $d R_{1} /(d+n)$ and $d R_{2} /(d+n)$ less than $\epsilon_{1} / 2$. Since the point (R_{1}, R_{2}) is in an infinite sequence of B_{n}, this is possible. Now construct a block code based on n_{1} uses of the channel as individual "letters," within $\epsilon_{1} / 2$ of the rate pair (R_{1}, R_{2}) and with error probabilities less than ϵ_{2}. To each of the "letters" of this code annex the functions which return the channel to its original state. We thus obtain codes with arbitrarily small error probability $<\epsilon_{2}$ approaching the rates R_{1}, R_{2} and with arbitrarily large block length.

To show the converse statement, suppose (R_{1}, R_{2}) is not in B. Then for some
n_{0} every B_{n}, where $n>n_{0}$, is outside a circle of some radius, say ϵ_{2}, centered on (R_{1}, R_{2}). Otherwise (R_{1}, R_{2}) would be in a limit point of the B_{n}. Suppose we have a code of length $n_{1}>n_{0}$. Then its error probability is bounded away from zero since we again have a situation where the independence of "letters" obtains.

The region B may be called the capacity region for such a recoverable state channel. It is readily shown that B has the same convexity properties as had the capacity region G for a memoryless channel. Of course, the actual evaluation of B in specific channels is even more impractical than in the memoryless case.

17. Generalization to T-terminal channels

Many of the tricks and techniques used above may be generalized to channels with three or more terminals. However, some definitely new phenomena appear in these more complex cases. In another paper we will discuss the case of a channel with two or more terminals having inputs only and one terminal with an output only, a case for which a complete and simple solution of the capacity region has been found.

APPENDIX. ERROR PROBABILITY BOUNDS IN TERMS OF MOMENT GENERATING FUNCTIONS

Suppose we assign probabilities $P\left\{x_{1}\right\}$ to input letters at terminal 1 and $P\left\{x_{2}\right\}$ to input letters at terminal 2. (Notice that we are here working with letters, not with words as in theorem 2.) We can then calculate the log of the moment generating functions of the mutual information between input letters at terminal 1 and input letter-output letter pairs at terminal 2. (This is the \log of the moment generating function of the distribution ρ_{12} when $n=1$.) The expressions for this and the similar quantity in the other direction are

$$
\begin{align*}
\mu_{1}(s) & =\log \sum_{x_{1}, x_{2}, y_{2}} P\left\{x_{1}, x_{2}, y_{2}\right\} \exp \left(s \log \frac{P\left\{x_{1}, x_{2}, y_{2}\right\}}{P\left\{x_{1}\right\} P\left\{x_{2}, y_{2}\right\}}\right) \tag{54}\\
& =\log \sum_{x_{1}, x_{2}, y_{2}} \frac{P\left\{x_{1}, x_{2}, y_{2}\right\}^{s+1}}{P\left\{x_{1}\right\}^{s} P\left\{x_{2}, y_{2}\right\}^{s}} \\
\mu_{2}(s) & =\log \sum_{x_{1}, x_{2}, y_{1}} \frac{P\left\{x_{1}, x_{2}, y_{1}\right\}^{s+1}}{P\left\{x_{2}\right\}^{s} P\left\{x_{1}, y_{1}\right\}^{s}} \tag{55}
\end{align*}
$$

These functions μ_{1} and μ_{2} may be used to bound the tails on the distributions ρ_{12} and ρ_{21} obtained by adding n identically distributed samples together. In fact, Chernoff [4] has shown that the tail to the left of a mean may be bounded as follows:

$$
\begin{array}{ll}
\rho_{12}\left[n \mu_{1}^{\prime}\left(s_{1}\right)\right] \leqq \exp \left\{n\left[\mu_{1}\left(s_{1}\right)-s_{1} \mu_{1}^{\prime}\left(s_{1}\right)\right]\right\}, & s_{1} \leqq 0, \\
\rho_{21}\left[n \mu_{2}^{\prime}\left(s_{2}\right)\right] \leqq \exp \left\{n\left[\mu_{2}\left(s_{2}\right)-s_{2} \mu_{2}^{\prime}\left(s_{2}\right)\right]\right\}, & s_{2} \leqq 0 . \tag{56}
\end{array}
$$

Thus, choosing an arbitrary negative s_{1}, this gives a bound on the distribution function at the value $n \mu_{1}^{\prime}\left(s_{1}\right)$. It can be shown that $\mu^{\prime}(s)$ is a monotone increasing function and that $\mu^{\prime}(0)$ is the mean of the distribution. The minimum $\mu^{\prime}(s)$ corresponds to the minimum possible value of the random variable in question, in this case, the minimum $I\left(x_{1} ; x_{2}, y_{2}\right)$. Thus, an s_{1} may be found to place $\mu_{1}\left(s_{1}\right)$ anywhere between $I_{\min }\left(x_{1} ; x_{2}, y_{2}\right)$ and $E(I)$. Of course, to the left of $I_{\min }$ the distribution is identically zero and to the right of $E(I)$ the distribution approaches one with increasing n.

We wish to use these results to obtain more explicit bounds on $P_{e 1}$ and $P_{e 2}$, using theorem 2. Recalling that in that theorem θ_{1} and θ_{2} are arbitrary, we attempt to choose them so that the exponentials bounding the two terms are equal. This is a good choice of θ_{1} and θ_{2} to keep the total bound as small as possible. The first term is bounded by $\exp \left\{n\left[\mu_{1}\left(s_{1}\right)-s_{1} \mu_{1}^{\prime}\left(s_{1}\right)\right]\right\}$ where s_{1} is such that $\mu_{1}^{\prime}\left(s_{1}\right)=$ $R_{1}+\theta_{1}$, and the second term is equal to $\exp \left(-n \theta_{1}\right)$. Setting these equal, we have

$$
\begin{equation*}
\mu_{1}\left(s_{1}\right)-s_{1} \mu_{1}^{\prime}\left(s_{1}\right)=-\theta_{1}, \quad R_{1}+\theta_{1}=\mu_{1}^{\prime}\left(s_{1}\right) \tag{57}
\end{equation*}
$$

Eliminating θ_{1}, we have

$$
\begin{equation*}
R_{1}=\mu_{1}\left(s_{1}\right)-\left(s_{1}-1\right) \mu_{1}^{\prime}\left(s_{1}\right) \tag{58}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(P_{e 1}\right) \leqq 2 \exp \left\{n\left[\mu_{1}\left(s_{1}\right)-s_{1} \mu_{1}^{\prime}\left(s_{1}\right)\right]\right\} \tag{59}
\end{equation*}
$$

This is because the two terms are now equal and each dominated by $\exp \left\{n\left[\mu_{1}\left(s_{1}\right)-s_{1} \mu_{1}^{\prime}\left(s_{1}\right)\right]\right\}$. Similarly, for

$$
\begin{equation*}
R_{2}=\mu_{2}\left(s_{2}\right)-\left(s_{2}-1\right) \mu_{2}^{\prime}\left(s_{2}\right) \tag{60}
\end{equation*}
$$

we have

$$
\begin{equation*}
E\left(P_{e 2}\right) \leqq 2 \exp \left\{n\left[\mu_{2}\left(s_{2}\right)-s_{2} \mu_{2}^{\prime}\left(s_{2}\right)\right]\right\} . \tag{61}
\end{equation*}
$$

These might be called parametric bounds in terms of the parameters s_{1} and s_{2}. One must choose s_{1} and s_{2} such as to make the rates R_{1} and R_{2} have the desired values. These s_{1} and s_{2} values, when substituted in the other formulas, give bounds on the error probabilities.

The derivative of R_{1} with respect to s_{1} is $-\left(s_{1}-1\right) \mu_{1}^{\prime \prime}\left(s_{1}\right)$, a quantity always positive when s_{1} is negative except for the special case where $\mu^{\prime \prime}(0)=0$. Thus, R_{1} is a monotone increasing function of s_{1} as s_{1} goes from $-\infty$ to 0 , with R_{1} going from $-I_{\min }-\log P\left\{I_{\min }\right\}$ to $E(I)$. The bracketed term in the exponent of $E\left(P_{\epsilon 1}\right)$, namely $\mu_{1}\left(s_{1}\right)-s_{1} \mu_{1}\left(s_{1}\right)$, meanwhile varies from $\log P\left\{I_{\min }\right\}$ up to zero. The rate corresponding to $s_{1}=-\infty$, that is, $-I_{\text {min }}-\log P\left\{I_{\min }\right\}$, may be positive or negative. If negative (or zero) the entire range of rates is covered from zero up to $E(I)$. However, if it is positive, there is a gap from rate $R_{1}=0$ up to this end point. This means that there is no way to solve the equation for rates in this interval to make the exponents of the two terms equal. The best course here to give a good bound is to choose θ_{1} in such a way that $n\left(R_{1}+\theta_{1}\right)$ is just smaller than $I_{\min }$, say $I_{\min }-\epsilon$. Then $\rho_{12}\left[n\left(R_{1}+\theta_{1}\right)\right]=0$ and only the
second term, $\exp \left(\theta_{1} n\right)$, is left in the bound. Thus $\exp \left[-n\left(I_{\min }-R_{1}-\epsilon\right)\right]$ is a bound on P_{e}. This is true for any $\epsilon>0$. Since we can construct such codes for any positive ϵ and since there are only a finite number of codes, this implies that we can construct a code satisfying this inequality with $\epsilon=0$. Thus, we may say that

$$
\begin{equation*}
E\left(P_{e 1}\right) \leqq \exp \left[-n\left(I_{\min }-R_{1}\right)\right], \quad R_{1} \leqq I_{\min } \tag{62}
\end{equation*}
$$

Of course, exactly similar statements hold for the second code working in the reverse direction. Combining and summarizing these results we have the following.

Theorem 7. In a two-way memoryless channel K with finite alphabets, let $P\left\{x_{1}\right\}$ and $P\left\{x_{2}\right\}$ be assignments of probabilities to the input alphabets, and suppose these lead to the logarithms of moment generating functions for mutual information $\mu_{1}\left(s_{1}\right)$ and $\mu_{2}\left(s_{2}\right)$,

$$
\begin{align*}
& \mu_{1}\left(s_{1}\right)=\log \sum_{x_{1}, x_{2}, y_{2}} \frac{P\left\{x_{1}, x_{2}, y_{2}\right\}^{s+1}}{P\left\{x_{1}\right\}^{s} P\left\{x_{2}, y_{2}\right\}^{s}} \tag{63}\\
& \mu_{2}\left(s_{2}\right)=\log \sum_{x_{1}, x_{2}, y_{2}} \frac{P\left\{x_{1}, x_{2}, y_{1}\right\}^{s+1}}{P\left\{x_{2}\right\}^{s} P\left\{x_{1}, y_{1}\right\}^{s}} .
\end{align*}
$$

Let $M_{1}=\exp \left(R_{1} n\right), M_{2}=\exp \left(R_{2} n\right)$ be integers, and let s_{1}, s_{2} be the solutions (when they exist) of

$$
\begin{align*}
& R_{1}=\mu_{1}\left(s_{1}\right)-\left(s_{1}+1\right) \mu_{1}^{\prime}\left(s_{1}\right) \\
& R_{2}=\mu_{2}\left(s_{2}\right)-\left(s_{2}+1\right) \mu_{2}^{\prime}\left(s_{2}\right) . \tag{64}
\end{align*}
$$

The solution s_{1} will exist if

$$
\begin{equation*}
-I_{\min }\left(x_{1} ; x_{2}, y_{2}\right)-\log P\left\{I_{\min }\left(x_{1} ; x_{2}, y_{2}\right)\right\} \leqq R_{1} \leqq E\left[I\left(x_{1} ; x_{2}, y_{2}\right)\right] \tag{65}
\end{equation*}
$$

and similarly for s_{2}. If both s_{1} and s_{2} exist, then there is a code pair for the channel K of length n with M_{1} and M_{2} messages and error probabilities satisfying

$$
\begin{align*}
& P_{e 1} \leqq 4 \exp \left\{+n\left[\mu_{1}\left(s_{1}\right)-s_{1} \mu_{1}^{\prime}\left(s_{1}\right)\right]\right\} \\
& P_{e 2} \leqq 4 \exp \left\{+n\left[\mu_{2}\left(s_{2}\right)-s_{2} \mu_{2}^{\prime}\left(s_{2}\right)\right]\right\} \tag{66}
\end{align*}
$$

If either (or both) of the R is so small that the corresponding s does not exist, a code pair exists with the corresponding error probability bounded by

$$
\begin{equation*}
P_{e 1} \leqq 2 \exp \left\{-n\left[I\left(x_{1} ; x_{2}, y_{2}\right)-R_{1}\right]\right\} \tag{67}
\end{equation*}
$$

or

$$
\begin{equation*}
P_{c 2} \leqq 2 \exp \left\{-n\left[I\left(x_{2} ; x_{1}, y_{1}\right)-R_{2}\right]\right\} \tag{68}
\end{equation*}
$$

Thus, if s_{1} exists and not s_{2}, then inequalities (66) would be used. If neither exists, (67) and (68) hold.

REFERENCES

[1] C. E. Shannon, "Certain results in coding theory for noisy channels," Information and Control, Vol. 1 (1957), pp. 6-25.
[2] -_, "Channels with side information at the transmitter," IBM J. Res. Develop., Vol. 2 (1958), pp. 289-293.
[3] ——, "Geometrische Deutung einiger Ergebnisse bei der Berechnung der Kanalkapazitat," Nachrtech. Z., Vol. 10 (1957).
[4] H. Chernoff, "A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations," Ann. Math. Statist., Vol. 23 (1952), pp. 493-507.

